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Abstract—This paper considers policy-centric optimal motion
planning with limited reaction time. The motion planning queries
are determined by their goal regions and cost functionals, and
are generated over time from a distribution. Once a new query is
requested, the robot needs to quickly generate a motion planner
which can steer the robot to the goal region while minimizing a
cost functional. We develop a meta-learning-based algorithm to
compute a meta value function, which can be fast adapted using
a small number of samples of a new query. Simulations on a
unicycle are conducted to evaluate the developed algorithm and
show the anytime property of the proposed algorithm.

I. INTRODUCTION
Motion planning is a fundamental problem and it aims

to steer a mobile robot from an initial state to a goal set,
while satisfying dynamic constraints and environmental rules.
It is well-known that the problem is computationally chal-
lenging, especially when the problem’s dimension is high.
For example, the warehouseman’s problem is shown to be
PSPACE-hard [9]. Sampling-based algorithms, e.g. Probabilis-
tic RoadMap (PRM) [15] and Rapidly-exploring Random Tree
(RRT) [22], are particularly efficient in finding feasible paths
in high-dimensional spaces. Optimal motion planning seeks a
collision-free path which minimizes a given cost functional,
and is computationally harder than feasible motion planning.
RRT* [13] is shown to be both computationally efficient and
asymptotically optimal. Paper [14] extends RRT* to handle
non-holonomic dynamical systems, and SST* [23] relaxes the
use of steering function in [14].

The above motion planners are path-centric, i.e., searching
for a collision-free path connecting a given initial state and
a goal. Afterwards a feedback controller for path following,
e.g., model predictive control (MPC) method [3], or trajectory
optimization [16], is synthesized to track the path. As pointed
out in [32], motion model inaccuracies, random disturbances,
and control signal saturation inevitably introduce additional
errors, making tracking precomputed paths difficult. In con-
trast, policy-centric motion planners compute feedback control
policies over the whole state space. Policy-centric optimal
motion planning of kinodynamic systems is essentially optimal
control of nonlinear dynamic systems, e.g., unicycle robots and
quadcopter, subject to state and input constraints. Notice that
this class of control problems is known to be computationally
challenging and suffers from the curse-of-dimensionality [2].
Papers [19, 20] leverage Fast Marching Method (FMM) [29],
a numerical solver of Hamilton-Jacobi-Bellman (HJB) equa-
tions, to compute the optimal value function on a simplicial

complex rather than a state grid. Repairing Fast Marching
Method (ReFMM) in [31, 32] proposes a repairing modifi-
cation of FMM to adaptively refine the simplicial complex
mesh, and is shown to be asymptotically optimal and fast in
replanning during the mesh refinement. Several methods, e.g.,
MPC, have been proposed to trade optimality for scalability.
MPC uses a sequence of finite-horizon optimal control prob-
lems online to approximate an infinite-horizon optimal control
problem. Paper [7] employs the MPC method with the probing
feature to plan a globally convergent trajectory, and employs
another controller to track the trajectory.

Meta-learning or learning-to-learn has a potential to develop
fast algorithms for policy-centric optimal motion planning.
Meta-learning is oriented to multi-task learning scenarios and
employs a learning model to extract task-agnostic knowledge
from a family of related tasks and harness the knowledge to
improve the learning of new tasks from the family. Meta-
learning is shown to be effective in addressing many con-
ventional challenges of deep learning, including data and
computation bottlenecks, as well as generalization [11]. It has
been demonstrated that meta-learning leads to state-of-the-art
performance on few-shot image classification, few-shot regres-
sion and few-step policy fine-tuning of reinforcement learning
(RL) [6, 8]. In meta-reinforcement learning (MRL) [8], the
dynamic systems are modeled by Markov Decision Processes
(MDPs) and motion planning is formulated as an RL problem
and solved by REINFORCE [27] and trust-region policy
optimization (TRPO) [28]. When the meta policy is trained, its
adaptation to a new task only requires a few steps of gradient
descent. In [6, 8], MDPs are limited to discrete time space and
the value functions are characterized by Bellman equations.
In kinodynamic motion planning, it is a standard practice that
dynamic systems of robots, e.g., unicycle, Dubins car, and
quadcopter, are modeled as differential equations in continuous
time, state, and control spaces [21, 22]. Correspondingly, HJB
equations, continuous counterparts of Bellman equations, are
used to characterize value functions.

Contributions. The paper develops the first meta-learning
approach which can efficiently solve policy-centric motion
planning of nonlinear robot dynamics in continuous time, state,
and control domains. In particular, we study the problem where
a robot faces a family of motion planning queries. Each query
is characterized by a goal region and a running cost functional,
which is drawn from a known probability distribution. Once a
specific query is requested, the robot needs to quickly generate



a motion planner which steers it to the goal while minimizing
its running cost functional. First, we leverage the set-valued
method in [5] to efficiently approximate the optimal value
function and the optimal controller of each specific query
on a coarse state grid. Second, the obtained optimal value
functions are used to train a meta value function modeled
by a deep neural network (DNN). The meta training aims to
minimize the distance between the optimal value functions
and the DNN with one-step gradient descent subject to a hard
constraint derived from the HJB equation. Third, we introduce
an anytime adaptation law which quickly updates the meta
value function once a new query is requested. The update
only requires the optimal values of a small number of states
for the new query and the data are efficiently generated by
the causality-free method. Simulations on a unicycle robot
show that the algorithm is able to return a near-optimal control
policy quickly and keeps improving policy optimality if more
time is given. Our key insights are as follows. The meta value
learning approach identifies an optimal initialization of the
DNN training for the whole query family. The meta training
searches for an initial DNN model which has the minimal
cost after running a few steps of query-specific training. So
this initialization tends to be closer to a good parameter of
the query which is more difficult to be learned, i.e., requiring
more steps of training, so that a few steps of training on both
easy and difficult queries leads to a low expected cost.

Notations. Define the distance from a point x ∈ X to a set
A ⊆ X as d(x,A) ≜ inf{∥x − a∥ | a ∈ A}. The unit ball
centered at 0 is denoted as B. The δ expansion of a set A is
defined as A + δB ≜ {x | d(x,A) ≤ δ} for some δ ≥ 0. For
a set X and a mapping f , we define the image set f(X) ≜
{f(x) | x ∈ X}.

II. PROBLEM FORMULATION

A. System model

Consider a mobile robot whose dynamic system is governed
by the following differential equation:

ẋ(t) = f(x(t), u(t)), (1)

where x(t) ∈ X is the state of the robot and u(t) ∈ U is its
control. Let X ⊆ Rn and U ⊆ Rm be the state space and
the set of all possible control values, respectively. The goal
region XG ⊆ X . Assume that f is Lipschitz continuous in
both variables. The running cost functional L(x, u) satisfies
L(x, u) = 0 when x ∈ XG, and L(x, u) > 0 when x ∈
X \XG.

B. Policy-centric optimal motion planning

Given a goal region XG and a running cost functional L, a
policy-centric planner is synthesized to steer the robot to reach
the goal region with minimum cost. The task is formulated as
the following optimal control problem:

min
u(·)∈Π

∫∞
0

L(x(t), u(t))dt,

s.t. ẋ(t) = f(x(t), u(t)),
x(0) = x, x(t) ∈ X, ∀t ≥ 0.

(2)

Here the set of time-invariant state feedback control policies
is defined as Π ≜ {u(·) : X −→ U}. The minimal value of
(2) is the optimal value function denoted as V ∗(x;XG, L)
and the optimal solution is the optimal controller denoted
as u∗(x;XG, L). Since L and f are time-invariant, so is
V ∗(x;XG, L). Assume that V ∗(x;XG, L) is continuously
differentiable in X for any XG and L.

C. Fast policy-centric motion planning

In the fast policy-centric motion planning problem, the
robot is required to visit a set of goal regions which are
revealed sequentially in a time-varying environment. We con-
sider a family of motion planning queries and each query is
characterized by a query configuration, i.e., the pair of the
goal region X

(i)
G and the running cost functional L(i). The

pair of (X
(i)
G , L(i)) is drawn from a probability distribution

p(XG, L). We assume that the query configuration distribution
p(XG, L) is given in advance. For example, in the dynamic
vehicle routing problem [4], a vehicle travels to provide on-
site service while minimizing the expected waiting time of
the demands, where the inter-arrival times follow a Poisson
process and the routing demands for service follow a time-
invariant spatio–temporal Poisson process. Our objective is
to develop an approach which can quickly generate a nearly
optimal solution of (2) once a specific query is requested.

III. MAIN RESULT

In this section, we develop a meta-learning approach to
solve the fast optimal motion planning problem. First, we
efficiently approximate the optimal value function and the
optimal controller for each query on a coarse state grid by
the set-valued method in [5] and deep learning is employed
to interpolate the optimal value function and the optimal
controller in the continuous state space (Section III-A). Sec-
ond, we learn the meta value function DNN by minimizing
the distance between the discretized optimal value functions
obtained in the first step and the DNN obtained by applying
one-step gradient descent to the meta parameter (Section
III-B). Third, we introduce the anytime adaptation approach
which quickly updates the meta value function in response to
a newly requested query (Section III-C). The adaptation only
requires the optimal values of a small number of states for
the new query and the data are efficiently generated by the
causality-free method in [12, 25].

A. Query-specific optimal motion planning

Assume that the query is specified. For notational simplicity,
we drop XG and L in this section. For any admissible control
policy [1] u ∈ Π, assume the following cost function is
continuously differentiable:

V u(x) ≜
∫ ∞

0

L(x(t), u(x(t)))dt, x(0) = x. (3)

Define the Hamiltonian function as

H (x, u,∇xV
u) ≜ L(x, u) +∇xV

u(x)T f(x, u). (4)



With the Hamiltonian (4), the HJB equation is given by:

min
u∈Π

H (x, u,∇xV
∗) = H (x, u∗,∇xV

∗) = 0. (5)

The optimal controller minimizes the Hamiltonian, i.e.,

u∗(x) = argmin
u∈Π

H (x, u,∇xV
∗) . (6)

To solve (5), a widely used idea is to discretize the system
and perform dynamic programming on a discrete state grid.
However, dynamic programming suffers from the curse-of-
dimensionality [2], i.e., the computational complexity expo-
nentially increases as the size of the state grid. In what follows,
we develop a new two-step solution. First, we use the set-
valued method in [5] to obtain a discrete approximation of
V ∗ in a coarse state grid Xd. Second, a DNN is employed to
interpolate the discrete optimal value function in continuous
state space X . Then an approximate optimal controller is com-
puted by solving (6), where V ∗ is replaced by the interpolated
optimal value function.

1) Set-valued approximation: The set-valued method in
[5] is used to solve problem (2). Specifically, system (1) is
approximated by a discretized set-valued dynamic system, and
value iteration is executed until reaching a fixed point.

The set-valued method assumes that the state and input
spaces are compact. To satisfy the requirement, we choose
compact sets X̄ which contains all the optimal trajectories
and Ū which contains all the optimal control values. Then the
state and control are constrained in compact sets X̄ ⊂ X and
Ū ⊂ U , respectively. Since X̄ and Ū are compact and f is
Lipschitz, then M ≜ maxx∈X̄,u∈Ū ∥f (x, u)∥ exists.

The set-valued approximation algorithm is stated as follows.
First, discretize X into Xd with spatial resolution h. Second,
construct the differential inclusion ẋ(t) ∈ F (x(t)) ,∀t ≥
0 to represent the dynamic system (1), where F (x) ≜{
f (x, u) | u ∈ Ū

}
. Because f (x, u) is Lipschitz with respect

to both variables, the set-valued map F (x) is Lipschitz and
the Lipschitz constant is denoted by l. Third, discretize the
differential inclusion in the time and space domains and obtain
the following discretized set-valued dynamic system:

xn+1 ∈


(xn+εF (xn) + αB) ∩Xd

if d (xn, XG) > Mε+ h

xn, otherwise

where ε > 2h is the temporal resolution. The ball αB repre-
sents perturbations on the dynamics and ensures the image set
of any x is nonempty and the set-valued dynamic system is
well-defined. Fourth, run value iteration (7) until reaching a
fixed point, which is the optimal value function on Xd:

vn+1(x) = min
u∈Ū
{εL(x, u) + vn (x

′) |

x′ ∈ (x+ εf(x, u) + αB) ∩Xd}. (7)

The solution of (7) is the optimal control at state x.
The algorithm returns the optimal value function V̂ and

optimal control û of the discretized set-valued dynamic system

on the state grid Xd. These values are included in set Dtr

defined as follows:

Dtr ≜
{
Xd;

(
V̂ (Xd), û(Xd)

)}
. (8)

2) DNN interpolation: Next, we employ Dtr to train a
DNN which interpolates V̂ and û in X . By [10], NNs
can approximate any piecewise differentiable function with
arbitrary accuracy and their derivatives can approximate the
generalized derivatives of the function. Let V NN : X → R
an approximation of V ∗ and it is represented by a NN as:
V NN (x) ≜ gM ◦ gM−1 ◦ · · · ◦ g1(x), where each layer gm(·)
is defined as gm(y) ≜ σm (Wmy + bm) . Here Wm and bm are
the weights and bias vectors, respectively. In addition, σm(·) is
a nonlinear activation function, e.g., ReLU or sigmoid. In this
paper, we use ReLU for all the hidden layers. Typically, the
final layer gM (·) is a linear function, so σM (·) is the identity
function. Let θ denote the collection of the parameters of
V NN , i.e. θ ≜ {Wm, bm}Mm=1. So V NN (x) is parameterized
by θ and denoted as V NN (x; θ).

The NN V NN aims to interpolate V̂ in X . To achieve so,
the NN is trained by minimizing the following distance to V̂
over the training data set Dtr:

Lv

(
θ,Dtr

)
≜

∑
x∈Xd

[
V̂ (x)− V NN (x; θ)

]2
. (9)

From (6), one can see that the optimal control u∗ is
determined by ∇xV

∗. The approximate optimal control û
in the set-valued approximation in Section III-A1 provides
extra supervision for V NN and is expected to improve the
rudimentary loss function (9). We denote the mapping in (6)
as h : C(X) → C(X), such that u∗(x) = h(∇xV )(x).
The training of V NN can be viewed as minimizing the loss
function (9) subject to the following hard constraint:

û(x) = h
(
∇xV

NN (x; θ)
)
, ∀x ∈ Xd. (10)

Analogously, the underlying physics described by general
nonlinear PDEs are included as hard constraints in the physics-
informed NN approaches [26]. HJB equations are included
as hard constraints when NNs are trained to solve optimal
control [25, 30]. We define the violation of the constraint (10)
as follows:

Lu

(
θ,Dtr

)
=

∑
x∈Xd

∥∥û(x)− h
(
∇xV

NN (x; θ)
)∥∥2 . (11)

Consider the following Lagrangian:

L
(
θ,Dtr

)
≜ Lv

(
θ,Dtr

)
+ µ · Lu

(
θ,Dtr

)
, (12)

where µ ≥ 0 is the Lagrangian multiplier. Let θ∗ be a global
minimizer of the Lagrangian (12). The interpolated optimal
value function is given by V NN ( ; θ∗) and the interpolated
optimal controller uNN : X → U is given by

uNN (x) = h(∇xV
NN (x; θ∗)).



B. Meta value learning

The approach in Section III-A can solve the optimal motion
planning problem if a query is given. However, it is not fast
enough to handle a new query in real time. Instead, in this
section, we develop the offline meta value learning which uses
the set-valued approximation to generate the training data, the
DNN structure to represent the optimal value function and the
Lagrangian (12) to evaluate the models.

As stated in Section II-C, we consider a family of queries
which are drawn from the query distribution p(XG, L). We
can minimize L in (12) to get V NN and uNN for each query.
In order to plan new queries faster, we hope the DNN training
in the new queries can be accelerated by starting from a good
initial DNN parameter and consuming less training data. To do
so, we want to find a meta parameter θmeta for V NN , such that
one step update from θmeta with small K-shot data minimizes
the expected loss over the query family. In particular, the meta
value training is formulated as the optimization problem:

min
θ

E
(X

(i)
G ,L(i))∼p

[
EDK

i

[
L(i)

(
θ(i))

)]]
(13)

=E
(X

(i)
G ,L(i))∼p

[
EDK

i

[
L(i)

(
θ − α∇θL

(
θ,DK

i

))]]
,

where L is given in (12) and the query-specific loss function
L(i)(θ) = L (θ,Dtr

i ). The data set Dtr
i is given in (8) for query

configuration (X
(i)
G , L(i)) and the set DK

i is a K-combination
sampled from Dtr

i . The parameter θ(i) is produced by one step
gradient descent θ(i) = θ−α∇θL

(
θ,DK

i

)
with the randomly

sampled K-shot data DK
i , then is evaluated by the whole

query-specific data set Dtr
i . So for each query and arbitrarily

sampled K-shot data, the solution of one-step gradient descent
from θmeta has a low expected error, where θmeta is the global
minimizer of (13).

The meta training process is shown in Algorithm 1. First,
in line 1, we sample a set of motion planning queries T
from the given query distribution p(XG, L). Then, for each
sampled query (X

(i)
G , L(i)), the training data set Dtr

i ≜{
Xd;

(
V̂i(X

d), ûi(X
d)
)}

is generated by the set-valued ap-
proximation in Section III-A1. Second, we use the following
empirical minimization to approximate the expected minimiza-
tion (13):

min
θ

∑
(X

(i)
G ,L(i))∈T

∑
DK

i

[
L(i)

(
θ − α∇θL

(
θ,DK

i

))]
. (14)

To solve (14), in each iteration, we sample a batch of queries
from the query family, then sample a batch of data from the
whole training data set Dtr

i for each query to minimize the
loss function, as the stochastic gradient descent (SGD) method
does. In each optimization iteration, a batch of queries Tk are
sampled from T , then inner optimization (lines 9-11) and outer
optimization (line 13) are employed. In inner optimization, for
each query (X

(i)
G , L(i)), we sample a K-shot data set D(1)

i ={
X1;

(
V̂i(X1), ûi(X1)

)}
from the Dtr

i , where X1 ⊂ Xd and
|X1| = K, and compute the one step K-shot gradient descent

Algorithm 1 Meta value learning
Input: p(XG, L): query configurations distribution
Input: α, β : hyperparameters, Xd: state gird
1: Sample a set of queries T from p(XG, L)

2: for all (X(i)
G , L(i)) ∈ T do

3: Compute V̂i(X
d) and ûi(X

d) for query (X
(i)
G , L(i))

4: end for
5: Randomly initialize θ0
6: while k ≤ P do
7: Sample a subset of queries Tk from T
8: for all (X(i)

G , L(i)) ∈ Tk do
9: Sample K-shot data set D(1)

i for query (X
(i)
G , L(i))

10: Update the parameter for query (X
(i)
G , L(i)) as (15)

11: Sample the data set D(2)
i

12: end for
13: Update meta parameter θk by (16)
14: k ← k + 1
15: end while
16: return θmeta = θk

parameter θ(i)k from the meta parameter θk:

θ
(i)
k = θk − α∇θL

(
θ,D(1)

i

)
|θ=θk . (15)

In outer optimization, we evaluate and optimize the perfor-
mance of the parameter after one-step gradient descent in
inner optimization. First, for each query, we need another
data set D(2)

i to evaluate the performance, where D(2)
i ={

X2;
(
V̂i(X2), ûi(X2)

)}
is also sampled from Dtr

i and X2 ⊂
Xd. Then the meta parameter θk is updated along the gradient
of the loss function in (14) for one step:

θk+1 =θk −
β

|Tk|
∇θ(

∑
(X

(i)
G ,L(i))∈Tk

L(θ−

α∇θL(θ,D(1)
i ),D(2)

i ))|θ=θk

=θk −
β

|Tk|
∑

(X
(i)
G ,L(i))∈Tk

(I − α∇2L(θk,D(1)
i ))

∇L(θ(i)k ,D(2)
i ), (16)

where β is the learning rate of meta training. The output of
Algorithm 1 is the meta value function V NN (·, θmeta).

C. Anytime adaptation

When a new query is requested, the meta value function
needs to be updated to the query-specific value function in an
anytime manner, i.e., a feasible solution is quickly obtained
and its optimality improves over time. Algorithm 1 returns the
meta value function V NN (·, θmeta), also indicates the one-step
parameter adaptation to the new query in (15).

1) K-shot data generation: To execute (15) for a new
query, we need to obtain the K-shot data of the optimal
value function for the query. Anytime adaptation requires
that K is small and data points are generated sequentially.



However, because the set-valued method in Section III-A1
simultaneously computes the approximate optimal value of all
states in a state grid, it cannot solve the problem within the
time limit, and then is not suitable for generating K-shot data.

The causality-free method [12, 25] is a computational
method for optimal control by solving high-dimensional HJB
equations. Unlike the set-valued method, the causality-free
method does not approximate the optimal value function V ∗

and the optimal controller u∗ on a state grid. Instead, a two-
point BVP derived from the Pontryagin’s Minimum Principle
(PMP) is solved at each point on the state grid. It is worthy to
highlight that these BVPs can be solved independently, making
the algorithm causality-free. As a result, the causality-free
method is more suitable than the set-valued method to generate
the K-shot data. In Section IV-D, we compare the set-valued
method and the causality-free method by simulations.

In order to use the causality-free method, we modify (2) into
the following fixed final time unconstrained optimal control
problem:

Ṽ ∗(t, x) = min
u(·)∈Γ

{
S(x(tf )) +

∫ tf

0

L(x(t), u(t))dt

}
,

s.t. ẋ(t) = f(x(t), u(t)), x(0) = x, (17)

where the set of time-varying state feedback control policies is
defined as Γ ≜ {u(·) : R≥0 ×X −→ U}, and tf is sufficiently
large. Unlike (2), the optimal value function Ṽ ∗(t, x) is time-
varying, and so is the optimal controller ũ∗(t, x). Then the
Hamiltonian function is defined as H(t, x, λ, u) ≜ L(x, u) +
λT f(x, u), where λ : [0, tf ] → Rn is the costate. The
optimal control ũ∗(t, x) satisfies the following Hamiltonian
minimization condition:

ũ∗(t, x) = argmin
u∈Γ

H(t, x,∇Ṽ ∗
x (t, x), u).

The causality-free method exploits a two-point BVP, which
is derived from the PMP:

ẋ(t) = f (t, x, u(t, x, λ)) , x(0) = x0

λ̇(t) = −∇Hx (t, x, λ, u(t, x, λ)) , λ (tf ) =
dS
dx (x (tf ))

v̇(t) = −L (x, u(t, x, λ)) , v (tf ) = S (x (tf ))
∇Hu (t, x, λ, u(t, x, λ)) = 0.

(18)
Given any initial state x0, the BVP (18) returns the solution,

say v(t), x(t) and u(t), which satisfies two equations

Ṽ ∗(t, x(t)) = v (t) , ũ∗(t, x(t)) = u(t). (19)

In (19), the optimal value function Ṽ ∗(t, x(t)) and the opti-mal
controller ũ∗(t, x(t)) in (17) along x(t) can be obtained. Note
that x(t) is the optimal state trajectory, u(t) and v(t) are the
control and the value along x(t), respectively. The BVPs with
different initial states are solved independently and return the
corresponding trajectories under the optimal controller. Hence,
the method is called causality-free.

We choose the terminal cost S(x) in (17) such that it is
high when the robot is far from the goal region and decreases
exponentially to 0 when the robot approaches to the goal
region. So the robot is penalized if it moves away from the

Algorithm 2 Anytime adaptation
Input: (X∗

G, L
∗): the new query configuration

Input: meta training parameter θmeta and meta step size α
1: n = 0, θ0 = θmeta

2: SJ = ∅
3: while n < N do
4: SD = ∅

Data generation
5: Sample a state xn from X
6: Compute the trajectory Jn by solving BVP (18) of

query (X∗
G, L

∗) with initial state xn

7: SJ = SJ ∪ Jn
8: for all J ∈ SJ do
9: Sample data with time interval ∆t from J and obtain

the data set D
10: SD = SD ∪ D
11: end for
12: Data set Dg with states sampled from the goal region
13: SD = SD ∪ Dg

14: Sample the Kn-shot data set DK from SD
Parameter adaptation

15: j = 0
16: θ∗0 = θn
17: for j < M do
18: θ∗j+1 = θ∗j − α∇θL

(
θ∗j ,DK

)
19: j ← j + 1
20: end for
21: θn = θ∗M
22: uNN (x) = h(∇xV

NN (x; θn))
23: n← n+ 1
24: end while
25: return uNN

goal region. In this way, the optimal value function V ∗(x) in
(2) and the optimal controller u∗(x) in (6) are approximated
by Ṽ ∗(t, x(t)) and ũ∗(t, x(t)), respectively.

To solve the BVP (18), we implement the BVP solver
introduced in [17], which is an iterative method based on a
three-stage discretization. However, the algorithm convergence
is local, i.e., it needs to start from a neighborhood of the
solution of (18). Fortunately, in the beginning (line 3) of
Algorithm 1, V̂ (Xd) and û(Xd) are computed for a number of
training queries by the set-valued method in Section III-A1.
When a new query is requested, we can select one of the
training queries that is close to the new query. Then the state
trajectory, the value function and the controller computed by
the set-valued method are used as the initial guess for (18).

2) Anytime adaptation: Anytime adaptation shown in Al-
gorithm 2 adapts the meta value function V NN (·, θmeta) to
the optimal value function of a new query (X∗

G, L
∗). The

algorithm iteratively executes the two phases: data generation
and parameter adaptation. Data generation in each iteration
constantly extends the data pool for following parameter
adaptation. In the n-th iteration, in line 5-6, we sample a state
xn from X uniformly and solve BVP (18) of query (X∗

G, L
∗)



with initial state xn. Then the solver returns the trajectory
denoted as Jn =

{
Ṽ ∗(t, xn(t)), ũ

∗(t, xn(t))
}

by (19) and
adds it into the trajectory set SJ . In line 8-14, we obtain a K-
shot data set from SJ . First, we sample the data of Ṽ (t, x(t))
and ũ(t, x(t)) along each trajectory in SJ with sampling unit
∆t. Denote the data set as SD. Further, we sample several
states in the goal region X∗

G, construct the data set Dg with
Ṽ (t, x(t)) = 0 and ũ(t, x(t)) = 0 for each state, and include
Dg in data set SD as an extension of the training supervision.
Notice that in each iteration, the number of states sampled in
X∗

G is required to keep the ratio of |Dg| to |SD| constant. It is
clear that this data extension does not consume any time. Then,
the data set denoted as DK which includes Kn data points, is
randomly sampled from SD and applied to anytime adaptation,
where Kn is proportional to n. In line 15-19, query-specific
parameter adaptation is done through gradient descent. For
each iteration n, M times gradient descent steps are performed
and start from the parameter θn−1 in the last iteration. In line
22, the control policy is updated in each iteration and in the
anytime manner.

Algorithm 2 can quickly adapt the meta parameter to the
query-specific parameter and hence rapidly plan the motion.
Firstly, the parameter adaptation requires doing a few steps
of gradient descent from the meta parameter, whose compu-
tational complexity is much lower than that of usual DNN
training starting from a random initial parameter. Secondly,
the adaptation requires a small number of data points of a
new query, which are efficiently generated by the causality-
free method. Moreover, in the causality-free method, optimal
values of states can be solved independently. As a result, the
data generation can be accelerated by parallel computing.

Once reaction time is reached, Algorithm 2 terminates
and the returned controller is executed. If more reaction
time is given, more adaptation data are generated to extend
the data pool for parameter update. By sampling from the
expanded data pool, the dispersion of the K-shot data set keeps
increasing. Thus, the optimal values in these states provide
an exhaustive supervision for the whole space in parameter
adaptation. In this way, Algorithm 2 keeps improving on the
optimality of the control policy.

IV. SIMULATION

In this section, we evaluate the proposed meta-learning
method. All simulations are executed on a 4.10 GHz Intel
Core i5 CPU with 4 total cores. The set-valued method in
Section III-A1 is executed in MATLAB. Algorithm 1 and 2
are written by Python and its PyTorch library. The ReFMM
algorithm in [32] and the MPC method are also written by
Python.

A. Problem parameters

The robot is modeled as a unicycle and its kinematic model
is given by ṗx(t) = cos (β(t))v(t), ṗy(t) = sin (β(t))v(t)
and β̇(t) = ω(t), where x(t) = [px(t), py(t), β(t)]

T is the
robot’s state with [px(t), py(t)]

T ∈ [−5, 5]× [−5, 5] being its
position and β(t) ∈ (−π, π] being its orientation, and u(t) =

(a) (b)

(c) (d)

Fig. 1. Robot trajectories. Four queries are moving to [4, 4] without
obstacles in Fig 1(a), moving to [1, 1] with an obstacle in Fig 1(b), moving
to [1, 4] and [4, 1] with three obstacles in Fig 1(c) and 1(d). The robot starts
from initial states [−4, 2,−0.1π], [2.5, 2.5,−0.125π], [2.5,−4.5,−0.5π],
[−4,−4,−0.25π], [−3,−3, 0.25π], [−2.5,−4, 0.25π], respectively.

[v(t), ω(t)]T is the robot’s control with v(t) ∈ R and ω(t) ∈ R
being its linear and angular velocities, respectively.

Consider the scenario where the goal region is a ball cen-
tered at xg with radius rg . The obstacles are balls or rectangles
and each is centered at xo

k with radius rok. The running cost
functional is defined as L(x, u) = Q(x)+uTu+ϕ(x), where
Q(x) = max{ 2

1+e
−3(||x−xg||22−r2g)

−1, 0} penalizes the distance

to the goal region, and ϕ(x) =
∑

k e
−4(||x−xo

k||
2
mk

−rok
2)

increases exponentially as the robot approaches the obstacles.
In ϕ(x), mk = 2 when the obstacle is a circle and mk = 1
when it is a rectangle.

Consider the query family where the goal radius is rg =
0.5, the goal center xg follows a uniform distribution over
[0, 5]× [0, 5]. There is no obstacle when xg ∈ (2.5, 5] ×
(2.5, 5], a circle obstacle is centered at xo

1 = [−1,−1] when
xg ∈ [0, 2.5) × [0, 2.5), a circle obstacle and two rectangle
obstacles are centered at xo

1 = [−1,−1], xo
2 = [−2, 2],

xo
3 = [2,−2], respectively, when xg ∈ [2.5, 5] × [0, 2.5] ∪

[0, 2.5]× [2.5, 5]. Each query configuration (XG, L) is defined
in the last paragraph and follows a distribution p(XG, L).

B. Meta value learning and adaptation

Algorithm 1 adopts a DNN which consists of an input layer
of size 4, followed by 3 hidden layers of size 256 with ReLU
nonlinearities and an output layer of size 1. Notice that the
optimal value function V ∗ is periodic in β. Thus, the input β
is replaced by two inputs sin(β) and cos(β). Then, the inputs
of the DNN are px, py and sin(β), cos(β). In Algorithm 1,



TABLE I
TOTAL COSTS

Goal [1, 1] [1, 4] [4, 4] [4, 1]

Set-valued method (fine grid) 17.3 20.1 24.0 20.1
Set-valued method (coarse grid) 17.6 20.3 24.4 20.3

ReFMM (fine grid) 17.4 20.1 24.1 20.1
ReFMM (coarse grid) 17.9 21.1 24.9 20.9

MPC 21.9 23.8 28.2 24.3
TRPO 19.6 22.1 27.2 22.0

DNN interpolation 17.8 20.2 24.2 20.3
Anytime adaptation 17.9 20.6 24.9 20.5

TABLE II
AVERAGE TIME CONSUMPTION

Approach Elapsed time

Set-valued method (fine grid) 36 min
Set-valued method (coarse grid) 4.5 min

ReFMM (fine grid) 17 min
ReFMM (coarse grid) 1.9 min

MPC 0.2 s (each instant)
TRPO 3.7 min

Meta value training Data generation 4.5 h
Meta training 2 h

Anytime adaptation Data generation 6.823 s
(n = 8) Parameter adaptation 0.043 s

Anytime adaptation Data generation 2.753 s
(Parallel computing) Parameter adaptation 0.043 s

Lu in the Lagrangian L of (12) includes the gradient of V NN

with respect to x. Both of finite difference approximation
and automatic differentiation [24] by some existing libraries,
e.g. PyTorch, are feasible. For our case, the finite difference
approximation is more efficient,

In Algorithm 1, we randomly sample 60 queries. For each
query, we generate 118, 000 data points by the set-valued ap-
proximation in Section III-A1, where h = 0.175 and ε = 0.4.
Set the adaptation data number as K = 256, the meta learning
rate α = 0.001 and the Lagrange multiplier µ = 0.1. In each
iteration, we sample 10 queries as a mini-batch and use the
Adam method [18] to optimize the parameters. In Algorithm
2, we set K = 256, N = 64, M = 5 and Kn = 32n. The
terminal cost is chosen as S(x) = e2(||x−xg||22−r2g).

Recall that the data generation in Algorithm 2 can be
accelerated by parallel computing. In the simulations, we
implement Algorithm 2 by multiprocessing, where 1, 2 and
4 processes are invoked by the program, respectively.

C. Competitors

We compare our method with five competitors. First, we
use the set-valued method in Section III-A1 on increasingly
refined state grids as [5]. Table I and II show the results on a
fine state grid (row 1) and a coarse state grid (row 2), which
contain 955, 000 states and 118, 000 states, respectively. Note
that the set-valued method is asymptotically optimal, then the
total costs of the controllers approach the minimal cost when
the state grids are sufficiently dense. Here, we use the set-
valued method on the fine state grid (row 1) as our benchmark.

Secondly, we employ ReFMM in [32] on increasingly

refined state simplices, and show the results on a fine state
simplicial mesh (row 3) and a coarse state simplicial mesh
(row 4), which contain 96, 000 simplices and 12, 000 sim-
plices, respectively. The ReFMM method is also asymptoti-
cally optimal.

The third competitor is MPC. We use the discrete-time
kinodynamic model of the unicycle robot with time interval
0.1 second and solve a 20-horizon optimal control problem at
each time instant. A quadratic function of the state is employed
as the terminal cost.

Fourthly, we employ a widely used RL algorithm TRPO
[28] to train a control policy model. The same dynamics is set
up as the MPC method in the training.

Finally, we compute the DNN interpolation controller
shown in Section III-A2. Note that the training data sets for
both DNN interpolation in Section III-A2 and Algorithm 1
are obtained by the set-valued method on the coarse state grid
with 118, 000 states.

D. Simulation results

We test the meta-learning approach and the competitors on
four queries which are drawn from the query distribution in
Section IV-A: (i) xg = [4, 4], no obstacle. (ii) xg = [1, 1], xo

1 =
[−1,−1], ro1 = 1, m1 = 2. (iii) xg = [1, 4], xo

1 = [−1,−1],
ro1 = 1, m1 = 2, xo

2 = [−2, 2], xo
3 = [2,−2], ro2 = ro3 = 0.8,

m2 = m3 = 1. (iv) xg = [4, 1], the obstacles are set as
(iii). Fig. 1 shows examples of the robot trajectories of the
four queries, where the arrows represent the moving directions
of the robot. Collisions are avoided when the obstacles are
present in the environments.

The total costs of the controllers where the robot starts
from initial state [−4,−4,−0.25π] are shown in Table I and
the average computation time of each component of these
algorithms is shown in Table II. Here we show the results
of that, 8 trajectories are generated, i.e., the computation time
of Algorithm 2 when it stops at iteration n = 8. The ReFMM
method (row 3 and 4) and the set-valued method (row 1 and
2), return nearly optimal solutions. The average costs of our
method when n = 8 (Table I row 8), ReFMM on the fine
grid (row 3) and ReFMM on the coarse grid (row 4) exceed
the benchmark (row 1) by 4%, 4%, and 0.5%, respectively,
showing the near optimality of the controller returned by the
meta-learning approach. MPC (row 5) is inherently suboptimal

Fig. 2. Relation between solution optimality and computation time



(a) Computation time (b) Success rate

(c) Approximation error (d) Normalized computation time

Fig. 3. Anytime property of Algorithm 2

and its cost exceeds the benchmark by 20%. The cost by
TPRO (row 6) exceeds the benchmark by 11%. On the other
hand, the reaction time of Algorithm 2 is less than 7 seconds
when n = 8. When the trajectories are computed in parallel
(4 processes invoked), the computation time reduces to 2.8
seconds. The fast online planning comes at a cost of long
offline meta value training time in Algorithm 1, which is
about 6.5 hours. Table II also shows that the data generation
dominates the computation time of Algorithm 2. In addition,
MPC takes 0.2 seconds to solve the 20-horiozon optimal
control problem at each time instant and the total online
computation time is proportional to the traveling time. On the
other hand, other methods only perform offline computation
once to synthesize controllers. So we do not compare the
computation times of MPC and other methods in Table II
and Fig. 2. As mentioned, its optimality is the lowest. The
computation times of other competitors are minutes.

Fig. 2 shows the normalized costs of the algorithms, i.e.,
the total costs relative to that of the benchmark (the set-
valued method on the fine state grid shown in row 1 of
Table I), as allowable computation times increase. In the
figure, the robot starts from initial states [−4,−4,−0.25π],
[−2.5,−4, 0.25π], [−4, 2,−0.1π] and aims to reach goal point
[4, 4]. Notice that each curve starts from the earliest time
that the method can compute a feasible controller, which can
successfully steer the robot from all of the initial states to
the goal. It is shown that the meta-learning method finds a
feasible controller in 4 seconds (a single process) and in 2
seconds (4 processes) which are much shorter than those of
the ReFMM algorithm and the set-valued method (about 15
seconds and 30 seconds, respectively). In addition, the meta-
learning method provides nearly optimal controllers (the total
cost exceeding the benchmark within 5%) in 6 seconds (a
single process) and in 3 seconds (4 processes). The ReFMM

algorithm and the set-valued method spend about 30 seconds
and 1.5 minutes, respectively, to reach the accuracy level 5%.
It takes the longest time for TRPO to search for a feasible
policy (1 minute) and the cost does not reduce after 3 minutes.

We run Algorithm 2 on 20 queries which are sampled
from the query family. Fig. 3 verifies the anytime property
of Algorithm 2. Notice that the algorithm keeps generating
data trajectories as the iteration number increases, and the
number of trajectories is equal to the iteration number. Fig.
3(a) shows the average computation time over the queries
linearly increases in the iteration number, and the parallel
computing accelerates the data generation. In Algorithm 2,
the data generation is much more time-consuming than the
parameter adaptation, then the algorithm is accelerated as
more processors are used. We evaluate the success rate of the
controllers by the percentage that the robot reaches the goal
region in finite time, where the initial states are uniformly
sampled from the free space. The success rate shown in Fig.
3(b) logarithmically increases as the iteration number. Fig.
3(c) shows that the approximation error of V NN (·, θn) by
Algorithm 2 exponentially decreases over the iteration number.
Overall, Fig. 3(a)-3(c) shows the anytime property of Algo-
rithm 2. More specifically, it takes 2 iterations (about 1 second)
to identify a controller whose success rate is about 50% and the
success rate exceeds 90% if 16 iterations (about 7 seconds) are
conducted. Fig. 3(d) shows the normalized computation time

TABLE III
COMPARISON OF TWO METHODS FOR DATA GENERATION

Approach Average
time per state

Number
of states

Total
time

Set-valued method 0.0023s 118, 000 278s
Causality-free method 0.0168s 256 4.3s



of Algorithm 2, i.e., computation time relative to the average,
slightly increases as the number of obstacles. It indicates
that Algorithm 2 is scalable with respect to the number of
obstacles.

Finally, Table III compares the computation time of the set-
valued method in Section III-A1 and the causality-free method
in Section III-C1. The average computation time per state of
the set-valued method is 0.0023s on the 118, 000 states which
are uniformly distributed over the state space. The average
time of the causality-free method is 0.0168s on 256 states
which concentrate on 8 motion trajectories (n=8). The set-
valued method is suitable for data generation of meta training
due to its low average computation time. But if it is applied
to the 256 states, the approximation error is too large. On the
other hand, the causality-free method quickly computes the
exact optimal values of a small number of states, and thus is
more suitable for anytime adaptation.

V. CONCLUSIONS

We propose a meta-learning-based algorithm for fast policy-
centric motion planning. The proposed method explores an
approach of policy-centric planning by the meta-learning al-
gorithm, which trades long offline training time for fast online
planning. A meta value function model is learned for a motion
planning query family, which can quickly adapt to a new query
from the family. Our method is evaluated against state-of-
the-art policy-centric motion planning methods in simulations.
In the simulations, a robot is required to quickly compute
controllers, which can drive the robot to different goals and
under various environments (no obstacle, one obstacle, and
3 obstacles are included, respectively). The simulation results
verify the effectiveness of the algorithm and assess its anytime
property.
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