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Abstract—Flapping wing aerial vehicles rely heavily on accu-
rate models for a variety of different tasks. There have been
significant efforts in creating both analytical and data-driven
models for many of these types of vehicles including ornithopters
and small aerial vehicles mimicking insects. However, very few
works have explored modeling for aerial vehicles with a skeletal
structure throughout the wings and a single flexible membrane
that covers the wings and tail such as is found in robots with
bat morphology. In this paper, we build upon previous efforts
to model a bat robot using a combination of first-principles and
data-driven tools. We record a series of load cell tests and free-
flight experiments, and we optimize the model parameters to
improve long-term flight prediction. We introduce several extra
terms in the model including a term explaining the coupling
between wings and tail in order to maximize the effectiveness of
collected flight data. The result is a model that performs well in
prediction for a range of different tail actuator configurations as
demonstrated by our flight results using a bat robot.

I. INTRODUCTION

In the field of robotics, creating an accurate model is critical
for many applications such as trajectory planning, long-term
prediction, control, and state estimation. This is particularly
important for flapping systems because their dynamics are
highly underactuated. While many systems possess actuators
that can shape the dynamics, the path of flight can be largely
determined by the initial launch conditions, and even a good
controller cannot compensate for certain flight scenarios. Ad-
ditionally, this is a challenging task because there are unsteady
aerodynamic effects due to flapping and flexibility in the wings
of these systems. Numerous works have undertaken this task of
modeling flapping aerial vehicles, most prominently FWMAVs
(flapping-wing micro aerial vehicles). These systems consist of
insect-scale fliers [6, 15], ornithopters mimicking birds [8, 17],
robotic hummingbirds [13, 27], and FWMAVs inspired from
insects [5]. However, far fewer have created models for robots
with bat morphology [21]. Biological bats are fundamentally
different than these other fliers because they have a more
complex skeletal system throughout the wings with both active
and passive joints. Where many fliers have a set of wings and
a separate tail, bats have a membrane that is stretched across
their wings and hindlimbs. Similarly, the bat robot called Bat
Bot (B2) developed by [21] has a single membrane that is
anchored to the hindlimbs and wings.

Previous works have used analytical models for B2 [18–21],
and one has used load cell data to improve model prediction
[12]. However, these models are limited in their capability

Fig. 1: Images of B2 (left) used in load cell and flight
experiments and a free-flight experiment (right). The reflective
markers are attached to the top carbon fiber structure in order
to be elevated enough to minimize marker occlusions from the
Vicon system.

of long-term flight path prediction (1-second duration for this
application), and consequently limited in more extensive use
of trajectory optimization and state estimation. In developing
a new model, there are two paths to take. One approach is to
create a more sophisticated aerodynamic model. However, this
comes at the cost of computational complexity and significant
time spent designing the model. An alternative is to utilize data
in some type of framework to produce a data-driven model,
either by creating a new model structure or by optimizing
the parameters of the existing structure. In this paper, we
consider the second approach of using data to optimize the
model parameters along with a few additions to the model
structure.

The primary contributions of this paper are summarized by
the following. First, we have developed a systematic data-
driven procedure that incorporates both load cell data and free-
flight data in order to optimize the parameters of an existing
model of the bat robot B2. Second, we have made several
additions to the existing model structure including a term that
couples the wing movement with the tail position in order
to capture the properties of the single wing surface and to
maximize the use of the collected flight data. The result is
a significant improvement in long-term flight prediction for a
set of flight tests with a variety of different tail configurations
using a minimal number of short flight tests. To the best of
the authors’ knowledge, this is the first study to validate the
long-term flight prediction of a model for a robot with bat
morphology using free-flight experiments data. We provide
extensive results to demonstrate its accuracy in long-term
prediction, and we show dramatic improvements in flight



predictions for a range of different tail configuration after
training with even a single flight test.

Previous work regarding bat robots has addressed the chal-
lenge of kinematic design of the robot [10, 11]. The authors
took a data-driven approach by using data from a biological bat
to optimize the geometric properties of the wings to best match
the biological data. Analogously, in this paper we address the
challenge of creating an accurate dynamics model of a robotic
bat with a data-driven approach. We use data from a robotic bat
to optimize parameters of the dynamics model to best match
the experimental data. This improves upon the existing model
from [12].

Because of the nature of data collection, it is challenging
to obtain large amounts of data to cover the full state space
of the robot. The state space is particularly large because the
oscillations produced from flapping are nontrivial, contributing
up to 10◦ of change in pitch and 2 cm of change in height
over one wingbeat period. As a result, we cannot use some
of the modern data-driven methods that require an extensive
collection of data. For example, Lee et al. [14] modeled the
dynamics of a FWMAV with a deep neural network, but
the training data set consisted of 30 minutes of flight data.
The methodology we have developed maximizes both our
knowledge of the robot and the available data to optimize the
analytical model’s parameters, and as a result, only a handful
of load cell tests and 1-second flights are required to achieve
excellent prediction results.

The remainder of the paper is organized as follows. Sec-
tion II discusses previous related works for data-driven models
of flapping flight. We describe our additions to the existing
model in Section III. The experimental data collection is cov-
ered in Section IV, and the parameter estimation routine used
to optimize the model with the data is presented in Section V.
The prediction results from the parameter estimation are given
in Section VI. We conclude with some remarks in Section VII.
A supplementary video1 describes the methods and results of
this paper.

II. RELATED WORK

It is both challenging and computationally expensive to
achieve high fidelity models of flapping flight, and thus many
researchers have considered system identification methods
for improving flapping flight models. Time domain system
identification methods have been popular in the flapping flight
community [1, 4, 7, 9]. These methods typically begin by
collecting a time series of acceleration data in the x (forward-
backward) and z (upward-downward) directions from either
dynamic free flight experiments or static wind tunnel exper-
iments. They use linear least-squares estimation for linear
models or gradient-based optimization for nonlinear models
to estimate the parameters of the model. Hoburg and Tedrake
[9] identified model parameters of a fixed-wing by recording
free flight data and running least-squares estimation with the
recorded acceleration data. Grauer et al. [7] used similar

1https://youtu.be/mDiCt2Tjnck

methods to identify a linear model for the lift and drag
coefficients of an ornithoper. Armanini et al. [1] used a Gauss-
Netwon algorithm to estimate aerodynamic model parameters
of a FWMAV from wind tunnel measurements on a force
sensor. Chirarattananon and Wood [4] collected acceleration
data of a FWMAV and used least-squares optimization with
gradient descent to identify parameters such as aerodynamic
coefficients, moments of inertia, center of mass offsets, etc.
These methods are considered one-step prediction, because
they do not minimize long-term errors from simulating the
dynamics forward in time. Consequently, several have refined
their initial identification method by running a gradient-based
optimization routine to minimize prediction errors between the
free-flight data and the model integrated forward in time [4, 9].

Other past works in system identification of flapping flight
have taking the approach of using linear model structures
[2, 3, 7, 24]. These have shown to be effective in modeling or-
nithopters and FWMAVs. However, each linear model is most
effective at a specific operating point, and model prediction
becomes less accurate further from this point. Additionally,
one of the limitations of purely data-driven approaches is the
need for new data for unexplored areas of the state space.
Rose et al. [24] effectively modeled an ornithopter for diving
using a series of free-flight tests and a family of linear models,
but tailoring the model to a new maneuver would require
collecting new flight experiments.

On the contrary, our approach could be effective for a range
of maneuvers given the physics-based model structure, and it
requires few flight experiments to train because much of the
relevant information is built into the model. Other works have
utilized a similar approach of creating a first-principles model
with parameters selected based on real world data. Ritz and
D’Andrea identified coefficients of a parametric aerodynamic
model for a tailsitter aircraft over a large flight envelope
[22]. Peng et al. [16] used nonlinear optimization to identify
parameters of a FWMAV model by simulating the model
through forward integration and minimizing the difference
between the estimated position and orientation of simulation
and that collected from data. This is also similar to previously
mentioned works of system identification of flapping flight
with nonlinear aerodynamic models [1, 4, 14].

Our strategy of using a physics-driven model with pa-
rameters tuned using a data-driven method has additional
advantages. The model is adaptable to changes to the physical
system because the parameters have physical meaning. For
example, if the wing span of the robot is increased, instead
of collecting a new data set, either the wingspan parameter is
increased or only a few data points may be needed to correct
for the change. This is a drawback for model structures that
lack physical intuition and are purely data-driven because they
are more inflexible in adjusting to changes in the physical
system without obtaining new data sets.

Another advantage is the ability to perform design optimiza-
tion for development of future versions of the robot because
the model can provide insight into how a robot’s design can be
improved. For example, Zhang et al. [27] optimized the design
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Fig. 2: Planar model of B2 dynamics and aerodynamics. This
image was taken from [12].

of a FWMAV using an analytical model in order to improve
flight and stability characteristics. A similar approach could
be used to maximize lift, thrust, efficiency, agility, and other
aspects of B2 in the same way that Hoff et al. [11] optimized
a robotic bat for kinematic similarity to biology. This would
require an analytical model in which the parameters have some
physical meaning.

III. MODELING

We have selected the model of B2 developed previously in
[12] as a baseline and starting point for the works in this paper.
This model was used successfully in a trajectory optimization
framework validated with flight results, thus providing a strong
initial framework to build upon. We make several significant
improvements to the existing model. First, we have designed
a custom coupling function to express the interaction between
the tail and wing surfaces. Second, we add an additional
aerodynamic surface to represent the part of the membrane
that is fixed to the body. Third, we add a nonlinearity for the
tail angle to be used in the aerodynamic force calculation.
Finally, we use a data-driven approach to optimize the model
parameters to improve long-term prediction. This section out-
lines the 2D longitudinal model from [12], and it presents
these new additions to the model. The data-driven approach
is presented in Section V. A more in-depth description of the
original model can be found in [12].

A. Original Model [12]

B2 is complex to model for several reasons. It propels
itself by flapping its wings, and flapping flight on its own is
challenging to model because of the unsteady aerodynamic
forces generated in flapping. In addition to this, both the
wing structure of B2 and the thin silicone membrane stretched
across the wings and tail are flexible and contribute passive de-
grees of freedom (DoF) in the system. Additionally, the mass
of B2’s wings cannot be ignored because they incorporate
roughly 15% of the robot’s weight. Given these complexities,
this model makes the following modeling choices: 1) B2’s
wings are modeled as flat plates to ignore flexibility. 2)
The two hindlimbs are represented as one plate. 3) The
aerodynamic forces on the wings and hindlimbs are considered
independently. 4) The aerodynamic center is located at the
quarter chord of the wing from thin airfoil theory. 5) The

aerodynamic forces on the flapping wings are assumed to
be quasi-steady such that the aerodynamic coefficients are
algebraic functions of angle of attack. These assumptions have
been made in past models of B2 [18–21].

Figure 2 depicts the model of B2. When the wings are
flapping, there is pronation and supination in the wings
(twisting of the wings in the spanwise direction) because of
wing flexibility. This angle is denoted as qPS. This is an
important aspect of the model because this passive twisting
contributes the thrust generation to propel B2 in flight. The
angle between the xy plane and each wing is the flapping
angle, and it is labeled qFL. The two hindlimbs are represented
as one flat plate, and the dorsoventral angle (tilting up and
down) between this and the xy plane is labeled qDV. These
DoFs are actuated by the corresponding torques uFL, uPS, and
uDV. qPS is actuated in the model such that it can maintain a
periodic trajectory. Both qFL and qPS are controlled to track
sinusoidal reference trajectories qrFL and qrPS using partial
feedback linearization to create periodic flapping.

The center of mass (CoM) of B2 can pitch up and down
and translate in the x and z directions. These unactuated DoFs
are labeled qy , px, and pz . The system can be fully described
using these coordinates, and thus they are grouped together in
the configuration variable vector q and the inputs in the vector
u:

q =
[
qy px pz qFL qPS qDV

]>
u =

[
uFL uPS uDV

]>
.

(1)

The Euler-Lagrange formulation is used to derive the equa-
tions of motion because this is a multi-body system. These
equations are written as

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu + Γ(q, q̇). (2)

The aerodynamic forces are mapped to the configuration space
and are defined as Γ(q, q̇). The inputs are mapped to the
configuration space with matrix B =

[
03×3 I3×3

]>
. The

state space representation of system is then given as

ẋ = f(x,u), x =
[
q> q̇>

]>
(3)

by solving for q̈ and combining q and q̇ into the state vector
The aerodynamic coefficients of the model are optimized in

the parameter estimation routine in Section V, so we provide a
brief formulation here. Hoff et al. [12] uses the model structure

CL = CL1 sin 2α

CD = CD0 + CD1 cos 2α
(4)

which is the formulation proposed by Wang [25, 26]. The lift
CL and drag CD coefficients are functions only of angle of
attack α (angle between orientation and velocity direction) and
are simple algebraic expressions. The constants CL1 , CD0 , and
CD1

will be determined through optimization in Section V.

B. Wing and tail coupling

We have observed an interesting phenomenon in B2 that
arises from the coupling between the membrane surfaces of



the wings and tail. The membrane is a single piece of silicone
that is stretched across B2. It is anchored to the three digits of
each wing, the front of the forelimbs, the hindlimbs, and the
top of the body. As a result, movement from the tail affects
the state of the wings. When the hindlimbs are in the up
position, the membrane starting at the front of the wings gently
slopes upward toward the tail. This gives the pronation angle
of the wings a downward tilt because the front of the wings
is below the rear membrane of the wings. Likewise when the
hindlimbs are positioned down, the membrane of the wings
slopes downward as it gets closer to the tail. The pronation
angle of the wings will have an upward tilt as the front the
wings is above the rear membrane of the wings.

We can incorporate this phenomena in our model by aug-
menting the reference pronation angle qrPS to become

q̄rPS(t) = qrPS(t) + acoupqDV(t) (5)

where acoup is the scaling factor for qDV and q̄rPS is the
new reference pronation angle. The scaling factor must be
a negative constant in order for an upward position of the
tail to give the pronation angle a downward tilt. When B2 is
flying and the hindlimbs move up, the sinusoidal pronation
angle reference will be negatively offset from zero and the
pronation angle will track this new reference. Likewise, when
the hindlimbs are moved down, the pronation angle will track
a positively offset reference angle. It is important that we
modify the reference angle and not qPS directly because qPS

is determined by the control input uPS and cannot be directly
modified. The value for the scaling factor acoup is tuned
through optimization in Section V.

The implications of this coupling between wings and tail are
significant. Future mechanical design of this robot is affected
by the amount of coupling between these, and the effects
this coupling has on flight performance such as agility and
efficiency will need to be studied.

C. Body plate

Another difficulty for properly modeling B2 has appeared
because the simulated trajectories of the model often overshoot
the actual experimental trajectories. Part of the reason is that
the model contains three aerodynamic forces: one for the right
wing, one for the left wing, and one for the tail. The problem
is that the membrane is attached to the body at the centerline,
so while the model accounts for the flapping wings, it ignores
an element of the surface that remains flat against the body
during the flight. When the robot is flying at a larger angle of
attack, this surface would contribute more drag to the robot
than is currently modeled. As a result, we add an additional
aerodynamic surface at the body to compensate for this.

We define the area of this plate to be Ab, and the x-
displacement between its center and the body CoM to be rb.
We roughly estimate this offset to be −3 cm. The value for
Ab is difficult to determine with certainty as the wing surface
is continuous, and it is a bit arbitrary as to how much area
is included in the wings and in this plate. Therefore, Ab is a
decision variable in the optimization in Section V.
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Fig. 3: Pitch angle recorded by Vicon system (blue) and IMU
(red) for one flight experiment.

D. Tail mapping function

In spite of these additions, simulations of flights with a tail
angle of qDV = 0◦ drop significantly faster than the actual
experimental data for this tail position even after optimizing
all parameters with data using the methods in Section V. Other
positive angles qDV ≥ 0◦ likewise underestimate the altitude
gain. We have noticed a high sensitivity for angles near this
0◦ mark, and this occurs partly because the membrane on the
tail is stretched the tightest at the neutral position. As a result,
there is a sharp jump between positive and negative angles at
this transition point. We model this by creating the mapping
of the tail angle

q̄DV =

{
qDV + c+DV, qDV >= 0

qDV, qDV < 0
(6)

where c+DV is a positive constant. The new term q̄DV is used in
place of qDV to compute the aerodynamic forces on the tail,
but qDV is still used in the dynamics. The value of c+DV will
be determined in the optimization in Section V. We note that
though there is a discontinuity here, the model can be used
for control and planning in the future by fitting a function to
smooth the transition.

E. Strip theory

One final change to the model is that we now use strip the-
ory for computing the aerodynamic forces. We have selected
to use 3 strips to approximate the rectangular wing shape by
running simulation from 1 to 100 strips and finding 3 as the
threshold for the error between k strips and 100 to be less than
1% for force in both the x and z directions over a wingbeat.

IV. DATA COLLECTION EXPERIMENTS

We incorporate the use of data to improve the prediction
capabilities of the analytical model we have presented in
the previous section. We have performed two types of ex-
perimental means of gathering data of B2. First, we have
collected force sensor data using a load cell over a range of
flapping frequencies. Second, we have collected position and
orientation data of B2 launched into free flight for a series of
different tail configurations.

B2’s electronics consist of a set of actuators, sensors,
and a processor. A brushless DC (BLDC) motor powers the
robot to flap by driving a crank shaft that moves the wings
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Fig. 4: All flight experiments plotted onto one figure with
pz vs. px displayed. This represents a variety of different tail
configurations making the robot dive for some flights and gain
altitude for others.

upward and downward. The two hindlimbs are independently
controlled by two servo motors. B2’s wings and hindlimbs
are constructed from hollow carbon fiber rods and nylon 3D-
printed parts, and a thin silicone membrane is stretched across
the entire structure. B2 has an on-board IMU (VectorNav VN-
100) that estimates roll, pitch, and yaw attitude and relays
them to the on-board computer (STM32f429II, 180 MHz 32-
bit Arm CPU). A 2S LiPo battery powers B2’s electronics
and actuators. We use this configuration for the following
experiments.

A. Load cell data

Force data was collected using the same methods as [12].
We powered B2 with a voltage of 8.4 V and secured it to an
analog six-axis JR3 force-torque sensor (model #30E12A4).
We used a dSPACE CLP1104 I/O box and DS1104 R&D
Controller Board to measure and record the load cell signals
at a sampling rate of 1000 Hz. B2 was driven to flap at a
range of different frequencies from 2.5 Hz to 7.8 Hz. The wind
speed for all trials is zero. The mean nominal force readings
(no flapping) were subtracted from each trial to eliminate any
sensor biases and the force of gravity. Finally, we low-pass
filtered the data with a 6th-order Butterworth filter with 50 Hz
as the cutoff frequency. We compute the average net force
F̄i

x,exp in the x-direction (direction of thrust) for each trial
i along with its flapping frequency ωi

FL and group them as
{ωi

FL, F̄
i
x,exp, i = 1, · · · , Nl} for a total of Nl = 9 tests.

B. Free-flight data

We recorded 43 free-flight experiments in the Intelligent
Robotics Laboratory (IRL) flight arena at the University of Illi-
nois at Urbana-Champaign (UIUC). This facility is equipped
with eight Vicon T40 motion capture cameras. We attached
four reflective markers to the top of the robot as shown in
Figure 1. We used the Vicon Tracker 3.4 software to compute
the position and orientation of the rigid body formed by
these markers. Using the Vicon DataStream SDK, we recorded
this data at a rate of 100 Hz. The IMU on B2 concurrently
estimated orientation, and the on-board computer logged this
to a microSD card. This is a high-performance IMU with a

propriety algorithm for estimating orientation, and thus its
estimation is comparable to the Vicon system as seen in
Figure 3. No post-processing was necessary for the IMU data.

While past work [12] has used IMU only for recording
data, we deemed it necessary to collect Vicon data as well to
improve the accuracy of the z position data and to additionally
record x position. The Vicon position data are quite accurate,
but Vicon Tracker software occasionally miscalculates the
orientation of the robot. This behavior has been reported in
previous work for Vicon measurements of a bat robot [11]. The
oscillation of the robot and the occlusion of the markers from
the wings are likely causes to this problem because this issue
was not present when the wings are fixed and not flapping.
We process the data to ignore miscalculations. Ignoring jumps
resulting from angle wrapping, data points are discarded if any
of the Euler angles jump beyond 90◦ from the mean angle
for that given flight. Any gaps left in the data are fixed with
linear interpolation. We estimate the velocity and acceleration
using forward finite differencing. The data collected has a 3D
representation, with roll, pitch, and yaw Euler angles and x,
y, and z positions. The model in this paper is 2D and all
flights in this study are straight with minimal roll, yaw, and y
movement, so we consider only the pitch angle qy , as well as
translational coordinates px and pz (after aligning the x axis
with the direction of flight).

Figure 3 shows the correspondence between the Euler angles
measured from IMU and Vicon. This figure demonstrates two
things. First, the IMU produces very accurate measurements
with little to no drift. Second, the Vicon measurements have
jumps and discrepancies in the orientation of the robot even
after processing. Thus, we use the orientation data of the IMU
and the position data of the Vicon system. We synchronize the
time between the two data sets using the cross correlation of
each pitch angle qy to compute the number of time samples
the data needs to be shifted by. Lastly, the robot does not have
a sensor for measuring the flapping angle qFL, so we estimate
this angle using the measured pitch qy . The flapping angle
is the same frequency as pitch oscillation, and in fact they
both are in phase with each other. The pronation angle qPS is
passive in B2, but in our model it tracks a reference 90◦ out
of phase with qFL, and thus we estimate this from qFL.

B2 was launched for each flight test using a custom built
launcher that accelerated the robot to a speed of roughly
8 m/s. We set the throttle of the BLDC motor by hand to
drive flapping at roughly 8.5 Hz immediately before launch.
The computer began logging IMU data upon sensing a large
x-acceleration value. The launcher was considerably more
reliable than hand launch for minimizing variation in initial
conditions. Specifically, minimizing the roll rate and keeping
the initial roll position at 0◦ is critical because we are using a
2D model. The flight paths of all the tests recorded are shown
in Figure 4.

The data set consists of 43 flights with 12 different tail
configurations of qDV between −16◦ and 20◦. Each flight
has a duration of roughly 1 s. The flapping frequencies for
all tests are between 8.1 Hz and 9.3 Hz, and the initial launch



velocities are between 7.7 m/s and 8.7 m/s . The first series
of tests were fixed to constant qDV < 0 tail positions and the
second series were fixed to constant qDV ≥ 0 positions. The
third series started at a constant qDV = 3◦, then the tail was
moved down to a negative angle, and then shortly after up to
a positive angle. We group the variables q and derivatives q̇
of each recorded trajectory i with Ni time samples into the
time series of state vectors {xi

exp(tk), k = 0, · · · , Ni−1, i =
1, · · · , Nf} for all Nf flights.

V. PARAMETER ESTIMATION

The analytical model of B2 is based on many approxi-
mations, and as a result there are unmodeled dynamics and
parameters that need to be adjusted. In this section, we outline
the use of data recorded of B2 to optimize these model
parameters. We utilize a novel methodology for using load
cell data and free-flight data to adjust the model parameters.
Initially, we use load cell data to tune the amplitude of the
pronation angle sinusoidal reference trajectory in order to
match the thrust produced in simulation to that recorded on the
load cell. The other model parameters are then tuned through
optimization by matching simulated flights with actual flight
experiments.

A. Optimization with load cell data

Hoff et al. [12] used load cell data of a bat robot to estimate
aPS, the amplitude of the pronation angle reference trajectory
qrPS. We likewise use these methods for this purpose. We
improve on this method by setting up an optimization routine
for this estimation. The cost function is

J (aPS) =

Nl∑
i=1

1

|F̄i
x,exp|

(F̄i
x,sim − F̄i

x,exp)2 (7)

to minimize the error between the average of the simulated
model and the average of the load cell data of the force in the
x-direction. This formulation matches the average thrust of
the model to the average thrust of the experiments. The term
F̄i

x,exp is the mean of the recorded load cell force in the x-
direction, and F̄i

x,sim is the mean of the simulated force in the
x-direction. F̄i

x,sim is a function of the decision variable aPS.
The optimization is subject to the bounds 0◦ ≤ aPS ≤ 45◦. We
divide by |F̄i

x,exp| to normalize the weight at each frequency.
We provide the initial guess of aPS = 11.5◦ by recording

B2 flapping at full speed and measuring the pronation angle
of the video frame when qFL = 0◦, which is the maximum
amplitude for qPS because of the 90◦ phase offset. This is the
initial guess for the optimizer.

B. Optimization with flight experiments

Past works state the limitations of using only load cell
data for flapping systems due to the system being constrained
rigidly to a platform and not allowed to oscillate naturally
[23]. While the optimization with load cell data has improved
thrust prediction of B2 by estimating aPS, many of the other
parameters must also be tuned in order to have accurate
free-flight prediction. The current values for many of the

parameters of the first-principles model are estimates based on
physical measurements of B2. There are unmodeled dynamics
in the system, and we can account for some of these effects
by optimizing these model parameters. We proceed to use
the model from [12] as an initial guess for estimating new
parameters using data from free-flight experiments.

We select the decision variables to be wc (wing chord
length), ts (tail span), Ab (area of body plate), CL1 , CD1 ,
CD0 (aerodynamic coefficients), c+DV (tail function mapping
parameter), and acoup (factor for coupling qPS and qDV). The
wing chord and tail span are both estimates because the wing
and tail are part of a contiguous surface, and it is a bit arbitrary
as to where they should be separated. Consequently they are
included as decision variables in the optimization. We group
all of these parameters into the vector P .

The model of B2 is to be used for trajectory optimization
and control, so we desire it to have excellent long-term pre-
diction capabilities with minimal long-term simulation errors.
Therefore we consider a multistep prediction formulation.
Given the same initial condition and actuator commands as
each experimental flight result, ideally our simulated model
will closely match those states trajectories. Therefore, we set
up our objective function as

J (P) =

Nf∑
i=1

N−1∑
k=0

∥∥x̄i
sim(tk)− x̄i

exp(tk)
∥∥2 (8)

where x̄ =
[
qy px pz q̇y ṗx ṗz

]>
. Here we are only

considering the error between the body CoM orientation,
position, and their velocities as a metric for evaluating tracking
performance of our model because the actuated coordinates
should be roughly equivalent.

We use forward Euler integration with a step size of dt =
0.001 s as

x(tk+1) = x(tk) + f(tk)dt (9)

to generate the simulated state trajectory {xi
sim(tk), k =

{0, · · · , N − 1}} for trial i. The initial state of the forward
simulation is set to xi

sim(t0) = xi
exp(t0), i.e. the initial state of

the experimental flight result. The references for the actuated
states qFL, qPS, qDV, and their derivatives are likewise set to
be those recorded in data. For the flights in which the tail
actuator changed between multiple positions, we add a small
delay of 0.1 s to qrDV when simulating the flights to account
for the delay of the servo motors. We add the constraint on
the aerodynamic coefficients CD0

+CD1
≥ 0 to prevent drag

term from adding thrust instead of drag. If CD is negative,
drag would be adding thrust to the model.

We used the interior-point algorithm of MATLAB’s fmincon
to solve the proposed optimization problem. The original
model parameters from [12] were used as the initial guess
to the optimization.

VI. RESULTS

We evaluate the performance of long-term prediction by
comparing the original model to the optimized model with the
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Fig. 5: Parameter estimation results showing pitch angle qy
and body CoM position pz vs px for qDV < 0 of flights
from the test data set. Gray is actual flight data, dotted blue
is the original model prediction of the model after forward
simulation, and dotted green is the optimized prediction of
the model.

Parameter Initial Optimized Description
wc 0.24 0.172 wing chord (m)
ts 0.12 0.089 tail span (m)

CL1
1.58 1.332 lift coefficient amplitude

CD1
−1.55 −1.639 drag coefficient amplitude

CD0 1.65 1.713 drag coefficient offset
Ab 0.00 0.012 area of body plate (m2)
c+DV 0.00 0.088 qDV offset parameter
acoup 0.00 −0.592 qDV-qPS coupling offset

TABLE I: Comparison of the initial guesses (original model
parameters) and final values of the decision variables of the
parameter estimation.

added terms. We separate the free-flight data into a training
data set and a testing data set. We select 13 training flight
tests that cover the range of qDV positions of the data set, and
we run parameter estimation with these to train the model.
The subsequent analyses and plots use only the remaining 30
flights of the test data set. We select a handful of different
flight experiments to represent different scenarios of the tail
position for qDV < 0 (Figure 5), qDV ≥ 0 (Figure 6), and
qDV initially constant, pitching down, and then pitching up
(Figure 7). Each of these figures shows the pitch angle qy over
the full trajectory and the body’s flight path given by pz vs. px.
Figure 7 also shows the prediction of the velocities. The spikes
in ṗx are a result of noise after finite differencing the position
data. The plots for qDV < 0 and large positive qDV show
how the original model overestimated the effects of the tail’s
influence on the dynamics and the new and optimized model’s
effectiveness in prediction. The improvement in prediction of
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(b) qDV = 10◦.
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(c) qDV = 15◦.
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Fig. 6: Parameter estimation results showing pitch angle qy
and body CoM position pz vs px for qDV ≥ 0 of flights from
the test data set.

qDV = 0 is partly due to the added bias term from Equation (6)
whose parameter was optimized. The evolution of the pitch
angle and altitude are remarkably accurate for most cases.

While the prediction has a high level of accuracy, flights
with larger qDV positions are more difficult to predict. The
pitch angle estimation at the end of the trajectory in Figure 7
and those with large qDV in Figure 6 deviate somewhat from
the actual. This is likely due to the higher angle of attack
of the system. However, altitude prediction remains accurate,
the average pitch estimation is satisfactory for this application,
and we still see a great improvement over the previous model.

The optimized values for the decision variables in the opti-
mization are shown in Table I. The changes of the parameters
are difficult to determine because they represent responses to
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Fig. 7: Parameter estimation results showing states and ve-
locities for a flight from test data with qDV = 3◦, then
qDV = −12.5◦, and finally qDV = 15◦.
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Fig. 8: NRMSE for predictions of flights in the test data
set. The top plot shows the error for flights with fixed qDV

positions and the bottom is the mean of the NRMSE for
predicted flights vs. the number of flights used for training
the model. The legend specifies the varying number of training
flights used in the optimization.

unmodeled dynamics of the system. However, a few seem to
have physical explanations. The wing chord length and tail
span have both decreased significantly, and this effectively
decreases both wing and tail area. Area is directly proportional
to the aerodynamic force on the surface, so consequently the
force is likewise reduced. The improvement from reducing
wing area is reflected in Figure 5, Figure 6, and Figure 7
because the pitch angle oscillation amplitude is reduced and
now matches significantly better to the flight results. The re-
duced tail area is also apparent in the plots because the original
model overestimated the effect of the tail for increasing and

decreasing pitch and altitude. The addition of the coupling
term and the tail function both compensate for the rigidity
assumptions, and it can be seen in Table I that they have
nontrivial values.

Without the wing-tail coupling term in Equation (5), even
after optimizing the parameters the model would overestimate
the tail’s influence for large positive qDV and gain too much
altitude. The effect of the coupling can be explained as follows.
When the tail is tilted up to a large angle, the wings have a
negatively biased tilt because of the wing-tail coupling. The
tail produces a net torque on the system from the aerodynamic
force on it and reorients the body to pitch up. If the wings had
a neutral tilt, the angle of attack of the wings would be positive
and would produce more lift and force the robot to a higher
altitude. However, given the negative tilt, this reorientation
gives the wings a neutral angle of attack, producing less lift
in this case and less altitude gain. This is clear from the plots
for qDV = 15◦ and qDV = 20◦ in Figure 6.

Additionally, it is important to consider the amount of
data needed to train the model. We run parameter estimation
with varying numbers of training flights, and we compute the
normalized root-mean-square error (NRMSE) for each flight of
the test data set for the unactuated states x̄. Figure 8 compares
the NRMSE against the number of flight experiments used for
training. This plot demonstrates several things. First, there is
a clear trend of improvement for every predicted flight test,
and most significantly for trials at qDV = 0◦. Second, even
after training with just a single 1-second flight test, there are
dramatic improvements in performance, demonstrating that the
model structure requires very few data points to be trained with
and that this method generalizes to flight conditions of qDV

not used in training. After training with 3 trials, the relative
change in the decision variables becomes significantly smaller
indicating that the threshold is around this number. However,
this number is subject to change depending on the intended
application.

VII. CONCLUSION

In this study, we have developed a data-driven methodology
to create an accurate model of a bat robot by using the
previous physics-based structure of an existing model [12],
adding several additional terms to the structure, and optimizing
the parameters using a series of load cell experiments and
flight tests. Our long-term prediction results demonstrate the
accuracy of the model. One limitation of this method is
that new data may be required to retrain the model when
modifications are made to the physical system. However, we
have shown that only a few flight experiments are necessary
to achieve excellent long-term prediction because of the setup
of the model structure and the additional terms added, and
training with even a single flight test significantly improves
prediction.
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