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Abstract—We address the problem of controlling a small team
of robots to estimate the location of a mobile target using
non-linear range-only sensors. Our control law maximizes the
mutual information between the team’s estimate and future
measurements over a finite time horizon. Because the com-
putations associated with such policies scale poorly with the
number of robots, the time horizon associated with the policy, and
typical non-parametric representations of the belief, we design
approximate representations that enable real-time operation. The
main contributions of this paper include the control policy,
an algorithm for approximating the belief state with provable
error bounds, and an extensive study of the performance of
these algorithms using simulations and real world experiments
in complex, indoor environments.

I. INTRODUCTION

Several important applications of robotics like environmen-
tal monitoring, cooperative mapping, and search and rescue,
require information to be gathered quickly and efficiently. In
this work, we consider a related information gathering problem
where a team of mobile robots must estimate the location
of a non-adversarial mobile target using range-only sensors.
Given the target’s mobility and the limited information range-
only sensors provide, the team must quickly determine which
movements will yield useful measurements.

These problems can be thought of as active perception
problems where one must find a control policy that is op-
timal in an information-theoretic sense [6, 19]. Maximizing
mutual information has been a particularly successful ap-
proach [12, 18, 7, 1, 16]. Most mutual information based
control laws are computationally tractable because they are
greedy maximizations over a single time step or are used in
offline or single robot scenarios. However, we cannot make
any of these assumptions in our problem. Given that the
target is mobile the team cannot generate plans offline. The
team must coordinate their movements because of the limited
information that range measurements provide about the target’s
state. Further, maximizing mutual information over a finite
time horizon involves minimizing a cost functional over the
set of possible trajectories, a problem that is computationally
intractable. Even if the time horizon and the trajectory are
discretized, calculating mutual information requires integration
over the joint measurement space of the team, which grows
with the time horizon of the plan and size of the team.
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To address these difficulties we develop a new approx-
imation and theoretical design criterion which enables us
to build a real-time mutual information controller for our
mobile target tracking problem. A primary contribution is a
method to approximate mutual information by approximating
the distribution over the target’s predicted location. While this
approximation necessarily introduces error into the control
law, we show that this error is bounded for Gaussian mea-
surement models. Importantly, this bound yields insight into
the degree to which we can speed up the calculation of mutual
information via approximation without significantly affecting
the team’s performance. The other primary contribution is a
bound on the difference in mutual information between two
control inputs as a function of the noise of the range sensors.
This analysis further aids in the design of a real-time system
by enabling us to appropriately design the set of control inputs.

We evaluate the proposed methodology and design trade-
offs through simulations and real world experiments. Our
results show that the approximation significantly decreases the
time to compute mutual information and enables the team to
quickly and successfully estimate the mobile target’s position.

In this work, we focus on range-only RF-based sensors
as we are interested in addressing the problem of target
localization and tracking in search and rescue scenarios where
the location and motion of targets are unknown, but the target
is equipped with an RF ranging device (as found in many
modern mobile phones [5]). As we will show, these sensors
enable operation in a variety of environments without requiring
line-of-sight to the target, which is often the case in search and
rescue scenarios. However, as the proposed mutual information
based techniques are broadly applicable, the presentation of
these methods in Sect. IV remains general.

II. RELATED WORK

There is extensive work on information based control.
Grocholsky [6] and Stump et al. [19] developed controllers
to localize static targets by maximizing the rate of change
of the Fisher information matrix, but their work assumes a
Gaussian belief. Hoffmann and Tomlin [7] maximized mutual
information and used a particle filter for the belief, but
limited coordination between robots to keep the observation
space small. We previously built on these ideas by using an
algorithm of Huber et al. [11] to approximate entropy [1].
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location of the target. This estimate is used to predict future locations of the target over several time steps. The control
law selects the trajectory of the team that maximizes the mutual information between the target’s predicted location and

target prediction

measurements the team expects to make. This trajectory is sent to the other robots which follow it.

Julian et al. [12] and Singh et al. [18] used mutual information
to estimate the state of static environments using multi-
robot teams. Krause and Guestrin [13] derived performance
guarantees for greedy maximizations of mutual information.
However, these guarantees only hold in offline settings where
new measurements are not incorporated as robots move. Ryan
and Hedrick [16] minimized entropy over a receding horizon to
track a mobile car with a fixed wing plane. We use dynamically
simpler ground robots, but our approximations enable us to
calculate control inputs for multiple robots in real-time.

The multi-robot range-only tracking problem we study is
similar to probabilistic pursuit-evasion games [2]. The problem
also relates to work by Hollinger et al. [8] on mobile target
estimation with fixed and uncontrollable range radios. We
focus on controlling mobile robots to localize a mobile target.

III. MUTUAL INFORMATION BASED CONTROL

In this section we describe a mutual information based
control law for the mobile target tracking problem. We first
detail how to estimate the target’s current location and predict
where it will go next, enabling the team to estimate what
measurements they will receive at different future locations.
Our control law uses these predictions to determine which
movements of the team will result in the biggest decrease of
the estimate’s uncertainty. Figure 1 outlines the entire process
and Tab. I describes all relevant variables.

Our control and estimation strategies are centralized and
require communication throughout the team. This limitation
is not significant for our problem as typical range sensors are
RF-based. If the team was in an environment where they could
not communicate, they could not make measurements.

A. Target Estimation

Range measurements can easily lead to non-trivial multi-
hypothesis belief distributions [1, 4, 7] and so we estimate the
target’s 2D position at time ¢ using a particle filter with the
typical recursive Bayesian filter equation [20]:

bel(xy) =n p(z | xt)/bel(xt_l)p(xt | z—1)dzi—1 (1)

where 7 is a normalization constant. This makes the standard
assumptions that the target’s state is a Markov process and that
measurements made at different points in time or by different
robots are conditionally independent given the state.

Similar to other work on predicting the motion of an un-
cooperative target [16, 21] we use a Gaussian random walk
for the process model: p(x; | 1) = N (x4; 241, 0°1) where
x4_1 is the mean and 021 is the covariance.

We assume that the measurement model, p(z; | x;), can be
modeled as the true distance between the target and measuring
robot perturbed by Gaussian noise. Previous experimental
work by Djugash and Singh [4] and the authors [1] shows
this assumption is reasonable when the target and robot have
line of sight and that there are techniques for mitigating it
when they do not.

B. Target and Measurement Prediction

To determine how they should move, the team must predict
where the target will go and what measurements they will
receive. Specifically, if the team plans a trajectory over the
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time interval 7 = t+ 1 : ¢t + T, they need to estimate the
target’s future state: ., = [T441, ..., Z¢7|. This can be done
using the current belief and process model:
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Where 6(-) is the Dirac delta function, 77 is the trajectory of
the j particle, and w is its weight.

Over this time interval the team will receive range measure-
ments z,(c;) = [ze41(¢t41)s - - -5 2t (Ce7)] Where zg, is the
vector of measurements the team receives at time k£ and c, is
the trajectory the team follows. The measurement density can
be calculated by marginalizing over the state and applying the
conditional independence assumption of the measurements:

t+T
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Because the measurement model is Gaussian, substituting
(2) into (3) results in a Gaussian mixture model representa-
tion of the measurement density. If the team has R robots,
then after applying the conditional independence assump-
tion the j® mixture component has a distribution equal to
HE;TH il p(zl(cf) | @ = &) and weight w;. Individual
range measurements are ldlmenswnal, which means the
measurement space is R7T'-dimensional.

C. Information Based Control

Our control law maximizes the mutual information between
the future state of the target and future measurements made
by the team. By considering multiple measurements over time,
the control law produces a better trajectory than a greedy
maximization would. Formally, at time ¢ the team selects the
trajectory to follow over the time interval 7 via the functional:

oy =argmax H[z-(¢;)] — H[zr(¢r) | 4] “4)
cr€C

where H][z,(c,;)| is the differential entropy of the measure-
ment density, H[z,(¢;) | z] is the conditional differential
entropy of the measurements given the target’s true state,
and their difference is mutual information [3]. Although it is
not explicit, both entropies are conditioned on measurements
made up to time ¢{. The domain of this objective is C, the
set of trajectories the team can follow. Both measurement
distributions and their entropies change as a function of where
the team travels. We now discuss how to generate trajectories
and evaluate the objective.

1) Trajectory Generation: The team makes measurements
at discrete points in time and so we treat the set of trajectories,
C, as a sequence of configurations. An element of C can
be expressed as ¢; = [ci+1,...,c4r] where ¢ is the
2D position of robot r at time k (we ignore orientation as
it does not affect range measurements). To generate these
configurations we use motion primitives. For example, in an
open environment the set of trajectories could be composed of
straight line trajectories whose final destinations are uniformly
spaced on a circle (Fig. 2a). When non-convex obstacles are
present (e.g., in an office building), C could be generated
by selecting final destinations and determining intermediate
points by interpolating along the shortest valid path (Fig. 2b).

2) Calculating the Objective: To evaluate the objective
for a trajectory c,, we separately evaluate the conditional
measurement entropy and measurement entropy.

Calculating the conditional entropy is straightforward. Us-
ing its definition and the assumed conditional independence
of the measurements given the state:

t+T R
Hiz (¢;) | -] = Zwl Z ZH |1:J—x] (5)
i=1 j=t+1r=1

M is the number of particles used to predict the target’s future
state (2) and the approximate equality is due to the particle
representation. Because each measurement comes from a
Gaussian distribution, the entropies in the summand can be
calculated analytically, making the running time ©(M RT).
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Fig. 2. Representative trajectories for a single robot using a finite set of
motion primitives with a finite horizon. The black boxes are the starting
locations, the black circles are the final destinations, and the hollow circles
show intermediate points.

Unfortunately, as shown in Sect. III-B the measurement
density, p(z-(c;) | z1.t), is a Gaussian mixture model (GMM)
and there is no analytic method for calculating its entropy.
Numerical integration methods can be used, but the domain
of integration is R7T-dimensional, making it large even when
there are a few robots over short time scales. This necessitates
the use of algorithms like Monte Carlo integration which scale
exponentially with the dimension, making them unsuitable for
real-time performance.

However, there is a deterministic approximation for the
entropy of a GMM developed by Huber et al. [11]. This
algorithm uses a truncated Taylor series expansion of the
logarithmic term in the entropy which allows the integration to
be performed analytically. We use the 0" order approximation:

M M
- Z wy, log Z w;N
k=1 j=1

where g(z) = Zf\il wiN (x; i, X;). While this approxima-
tion is not tight, our previous experimental work shows that it
suffices for information based control [1].

The time complexity of (6) is ©(M?RT). The dependence
on the number of particles which represent the target’s future
state, M, is problematic as it grows exponentially with the
time horizon, 7. While there are algorithms for reducing the
number of components in a GMM, their time complexity
is also quadratic in the number of components [15, 10]. In
Sect. IV-B we describe a different approach which reduces the
number of components by approximating the distribution over
the rarget’s future state, speeding up the entropy calculations
without significantly affecting their value.

(1ks5 115, ) (6)

IV. APPROXIMATE REPRESENTATIONS

In Sect. III we outlined a general control law for a multi-
robot team. However, it is computationally infeasible as the
team’s size and time horizon grow. It is also unclear which tra-
jectories to consider. We address these problems in Sect. IV-B
where we show how an approximation of the target’s future
state affects the objective function, and in Sect. IV-C where we
develop a theoretical design criterion for generating trajecto-
ries. These analyses use an information theoretic relationship
that we prove in Sect. IV-A.



A. Kullback-Leibler divergence and Entropy Difference

The Kullback-Leibler divergence (KL divergence or KLD)
is one way of measuring the “distance” between two densities.
For two densities p and ¢, it is defined as KL[p || ¢q] =

E, [log p(x)/q(x)]. Intuitively, if two distributions are similar
(i.e., their KL divergence is small) then their entropies (i.e.,
uncertainty) should also be similar. We show that this intuition
is correct for Gaussian distributions and use that result to
bound the difference of entropies between Gaussian mixture
models (GMMs) with identically weighted components. For
clarity of presentation, we defer all proofs to the Appendix.

The style of these information theoretic inequalities is not
novel. Silva and Parada [17, Theorem 2] recently proved that in
the limit as the KL divergence between bounded distributions
goes to 0, their entropies become equal. Cover and Thomas [3,
Theorem 17.3.3] showed that if the L; norm between discrete
distributions is bounded, they have similar entropies. Research
on rate distortion theory often looks at similar problems (e.g.,
how to find approximations of distributions without exceeding
a certain distortion). However, we are not aware of prior work
which directly relates KL divergence and entropy difference
for continuous distributions with unbounded support. In the
remainder of this section we also apply these bounds to our
robotics problem, which we view as our primary contribution.

Lemma 1 (Entropy Upper Bound for Mixture Models):

If f(x) > ;mifi(x) is a mixture model density then
H[f] < Hir] + >, m H[f;] where Hr] is the discrete
entropy of the mixture weights (Proved by Huber et al. [11]).

Lemma 2 (Entropy Lower Bound for Mixture Models): 1f
f(x) =3, mifi(x) is a mixture model, H[f] > > = H[f;].

Lemma 3 (KLD Bound on Entropy for Gaussians): If
f(z) and g(z) are two k-dimensional Gaussian densities:

| H[f] - Hg]| < min{KL[f || g], KLg [| f1} + g

Theorem 1 (KLD Bound on Entropy for GMMs): If
f(x) =>, mifi(x) and g(x) = >, mg;(x) are k-dimensional
GMMs with M identically weighted components then

| H[f] - Hlg]| < Hlx] + - +Zma1

where o; = min{KL[f; || ¢;], KL[g; || f;]} and >, m; = 1.
B. Approximating Belief

As discussed in Sect. III-C, the number of particles needed
to predict the location of the target grows exponentially in
time. This complicates calculating the entropy of the measure-
ment density, as it depends on the predictive distribution of the
target (3). In this section we show that a simple approximation
of the predictive distribution can speed up calculations of the
objective (4), without significantly affecting its value.

Our approach for approximating a particle set is to replace
subsets of similar particles with their average. Specifically, we
partition the state space with a regular square grid and create
an approximate particle set by replacing particles in the same
cell with their weighted average. Figure 3 shows an example

s Original
B m §Approximate

Original

A Approximate

(a) Distributions over target
locations

(b) Distributions over range measurements

Fig. 3. (a) The original particle set (circles) can be approximated by a smaller
set of particles (triangles) using a grid. (b) The different particle sets result
in similar distributions over range measurements (e.g., peaks at d; and d2)

of this process. In Fig. 3a the original particle set representing
a multi-modal distribution over the target’s location is reduced
via a grid. The new set is smaller, but it slightly changes the
measurement distribution as shown in Fig. 3b.

To prove that this approximation introduces a bounded
amount of error into the objective, we assume that the range
based measurement model has a constant variance o2 and is
unbiased. With these assumptions, the conditional entropy (5)
is H[zr(c;) | #+] = (T'R/2)1og(2mec?), which doesn’t de-
pend on the number of particles or their location. Thus, the
approximation does not introduce any error for this term.

The approximation does introduce error for the entropy
of the measurement density, H[z(c,;)]. To bound this error,
we first determine the original and approximate measurement
distributions. Let X be the original set of particles and f(z) =
Zj]vil w; f;(z) be the GMM it creates with the trajectory c,
and measurement model. Additionally, let G; be the subset
of X which forms the i part1c1e 1n the aRproximate particle
set V. The density ) creates is g(2) = 37,2, >, w;9i(2),
where g;(z) is determined by the average of particles in G;.
While M # N, the expressions for f and g have the same
number of components with identical weights. However, the
means of components f; and g; — which we denote as uli
and p9% — differ. Because measurements are unbiased, if c, 1s
robot r’s position at time k and & kj is the position of the j
particle in X at time k, the corresponding element of ufi is

M£JT = ¢, — xk 7||2. Similarly, if ;" is the particle in Y that

lies in the same cell as :ikxj, then uif = ||cz 73" ||2- Because
jkxj and ;" lie in the same cell, ||§:k ' o < /2L where
L is the cell’s length. Applying the trlangle inequality and
summing over robots:

2 <2RIL?

f.
”Nk-] - .UZ
Substituting this into the expression for the KL divergence
between Gaussians:

t+T
i — pf 13 _ TRL?
L[f] H gl] = Z 202 < o2 (7
k=t+1

This bounds the KL divergence between components of f(z)
and ¢(z), so Thm. 1 bounds the difference in entropies.
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Fig. 4. Monte Carlo integration vs. 0N order Taylor approximation for
evaluating mutual information. The Taylor approximation is more efficient.

Importantly, the bound shows that if the length of a grid cell
is close to the standard deviation of the measurement model,
then the error from the approximation will be negligible.

C. Selecting Motion Primitives

A central aspect of our approach is the use of motion
primitives to generate trajectories. To select an informative tra-
jectory quickly, we wish to generate as few as possible without
ignoring important directions. In this section we prove that mu-
tual information cannot change significantly when the team’s
trajectory changes on the order of the standard deviation of the
measurement model. This suggests that generating multiple
trajectories that are close to one another is computationally
wasteful. It also suggests that the intermediate waypoints from
motion primitives (e.g., Fig. 2) should be spaced as a function
of the standard deviation of the measurement model. We
exploit both of these observations when designing the system.

Let ¢ be a trajectory and f(z) = Y, w;fi(z) be the mea-
surement density it determines when combined with p(z | z),
and X, the particle set representing the predicted motion of
the target. If A is a perturbation to the team’s position at
each point in time, ¢ + A is a new trajectory with density
g(z) = >, wigi(z). X is the same for ¢ and ¢ + A, so
f(2) and g(z) have the same number of components with
identical weights. However, the means of the components (i.e.,
,uf and p9%) are not necessarily equal. Similar to before,
ufi, =113, — chllz and pf | = ||F, — (cj + A})||2 where &
is again the 7™ particle in X’ at time k. The triangle inequality
tells us |u£, — 3] < |A%ll2- Summing over all robots and
time steps in the expression for KL divergence yields:

t+7T R

i [ALI3
KL[f; || g:] < Z Z

202
k=t+1r=1

A direct application of Thm. 1 bounds the difference of
entropies between f and g. As before, the conditional entropy
in the objective is the same for both mixture models, and so
no error is introduced in that term.

V. EXPERIMENTS

This section describes a series of simulations and real world
experiments which evaluate the proposed methodology and
design trade-offs. All of our software is written in C++.
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Fig. 5. Effect of approximating belief on mutual information as two robots
move along a parameterized line from [0,1] (blue, (a) and (c)). Approximating
belief introduces limited error into the calculation of mutual information ((b)
and (d)) according to the bound developed in Sect. IV.

A. Computational Performance

In Sect. III-C we discussed how the primary computational
challenge of the objective is the calculation of the measure-
ment density’s entropy. We now study the performance of
Huber’s 0" order Taylor approximation and show that the
approximation algorithm in Sect. IV-B makes it tractable for
longer time horizons.

As a baseline, we compare the performance of the Tay-
lor approximation to the Vegas algorithm — a Monte Carlo
integration algorithm — on a variety of mixture models. To
generate a mixture we sample particles and a team trajectory
uniformly at random and then apply the measurement model.
Figure 4 shows the time to calculate the entropy of a single
mixture using different numbers of particles and measurement
dimensions. Teams often have to evaluate dozens to hundreds
of trajectories, so calculations longer than a fraction of a
second make the control law infeasible. The data show that
unlike Monte Carlo integration, the Taylor approximation is
feasible in higher dimensional spaces when the number of
particles is not large. Its lack of growth with dimension is
not surprising as its dependence on dimension is from simple
matrix operations.

Figure 5 depicts the effect of approximating the belief
on the calculation of mutual information as two robots are
constrained to move along a parameterized line from [0, 1].
Given a belief distribution represented by a particle filter (M =
2500, Fig. 5a), mutual information is computed for all possible
locations of the team with range-only observations (¢ = 1.0 m,
Fig. 5b). The value of mutual information matches intuition;
as the robots move away from the center of the belief (0.3
on the line), measurements become increasingly informative
with corresponding increases in mutual information. An ap-



proximate belief representation with fewer particles (M = 17)
corresponding to a grid length of 4.0 m (Fig. 5¢) yields mutual
information values that are similar to the original distribution.
The mean absolute error (0.037 as depicted) is lower than
Thm. 1 suggests, indicating that it can be a conservative bound.

B. Flexibility of Motion and Number of Robots

The team can presumably gather better measurements by
evaluating more trajectories, but this adds computational ex-
pense, and additional trajectories may not be helpful. To exam-
ine these trade-offs in a controlled setting, we run simulations
in an open environment and vary the number of robots in the
team and destination points they use to generate trajectories
(see Fig. 2a). We evaluate 1) how quickly the team obtains a
stable and accurate estimate and 2) how accurate the estimate
is over longer periods of time.

For each of these experiments the team moves at 0.2 m/s
while the target moves at 0.15 m/s. The team plans a 15 second
trajectory — simulating 3 target steps — and evaluates mutual
information at 3 points along each trajectory. All members of
the team start in the same location with the target 10 m to
their right. The target repeatedly drives straight for 5 m and
then selects a new direction uniformly at random. To make
meaningful comparisons across experiments, the target always
follows the same random path. The simulator generates range
measurements between the target and each team member at
10 Hz using a Gaussian whose mean and variance are equal
to the true distance. The simulator is asynchronous; the target
moves even if the team is planning.

To ensure that the motion model of the filter (1) generates
samples in all areas where the target could be, we set the
standard deviation to be o0 = 0.3, a small multiple of the
maximum speed of the target multiplied by the sampling
interval. To predict the target’s future location (2), the team
simulates a step every 5 seconds with o = 0.25.

The team “acquires” the target once they sustain an estimate
for 10 seconds with a mean error below 1.5 m and a spread
(i.e., the square root of the determinant of the covariance)
below 1.5. We chose these values as they are close to the best
the estimator can do. Table II shows acquisition times for 5
trials with a variable number of robots and destination points.
Surprisingly, the 3 robot team does worse with more destina-
tion points. This is a direct consequence of the exponential
growth in the number of trajectories the control law evaluates,
which makes the robots spend a long time planning their initial
trajectories. In contrast, the 2 robot team’s acquisition time
improves by considering more than 3 destination points, after
which point it does not change. Planning time is not an issue
for the 2 robot team — they have at most 36 trajectories — which
suggests that they are primarily limited by their team size. This
is emphasized by the 10 second difference in performance
between the best 2 robot time and the best 3 robot time.

To assess the long term performance of the team, we
ran the same set of experiments for 5 minutes. Figure 6a
shows the estimate’s error over time. While the target is
acquired at different points in time, the final error is the same

TABLE I
EFFECT OF MOTION PRIMITIVES AND TEAM SIZE ON THE TIME TO
ACQUIRE THE TARGET. MEAN AND STD. DEV. ARE SHOWN FOR 5 TRIALS.

2 Robots 3 Robots
3 Points | 80.55s (22.68) 42.57s (3.55)
4 Points | 56.00s (6.07) 49.00s (15.24)
5 Points | 56.17s (7.31) 51.83s (15.94)
6 Points | 55.10s (12.24) 69.71s (9.94)
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Fig. 6. Mean error of estimate for various motion primitives with 3 robots.
The number of primitives do not affect the long term error regardless of how
the target moves.

for all parameters. The computational difficulties that teams
with more trajectories have are not present once the filter
has converged, as the belief can be represented with fewer
particles. Figure 6b shows the long term error from a separate
experiment where the target moves 15 m to the right of its
starting location and then back. This motion makes it harder
to obtain and maintain an accurate estimate because the target
moves away from the team for a long time without periodically
stopping and turning. The similar results across experiments
indicate that our estimation and control approach work well.

C. Indoor Experiment

To study the real world performance of a team we run
two real world experiments where two mobile robots track
a third mobile robot as it moves in a loop through an office
building as shown in Fig. 8. The target’s path is 55 m long
and it moves at 0.12 m/s, traversing the loop in about 8
minutes. The team starts across the map, travels at 0.2 m/s,
and plans using destination points that are 6.0m away. Each
robot is equipped with a Hokuyo-URGO04LX laser scanner for
localization, a 802.11s wireless mesh card for communication,
and a range sensor that is commercially available as part of the
nanoPAN 5375 Development Kit [14]. The nanoPAN 5375’s
measurements often have an error larger than 2.0m [1].

In our first experiment, the target traverses its loop once.
Figure 9a shows the error of the estimate over 7 trials. Overall,
the team is able to obtain a good estimate quickly and maintain
it. The mean root mean square error (RMSE) from ¢ = 60s to
the end of the experiment was 2.43 m with a standard deviation
of 0.68. The authors previously achieved errors of 1.0-2.0 m
when localizing stationary nodes with the same sensor [1].
Given that the target is moving in this experiment, we believe
these results indicate that the team performs well.
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Fig. 8. Indoor experimental setup. The target starts at the blue “X” and
moves in a loop. The team starts at the red circle.

In our second experiment, we assess the longer term perfor-
mance of our approach by having the target traverse the same
loop 4 times. Figure 9b shows the error of 2 different trials
and Fig. 7 shows the filter’s evolution in trial 1. Again, the
team does a good job tracking the target and obtains RMSEs
of 3.88 m and 2.83 m. These slightly higher error rates are due
to multiple hypotheses that sometimes arise as a result of the
limited information range measurements provides. Given the
limited travel directions in this environment, it is also difficult
for the team to obtain measurements that remove ambiguities.
Figure 7d and Fig. 9b at ¢ ~ 1000s show this happening.
However, whenever the error increases, it eventually decreases.
It is also important to note that when the estimate’s error
increases, its covariance also increases; the rise in error is not
indicative of the team being overly-confident of a bad estimate.

VI. CONCLUSION

In this paper we present a control policy for maximizing
mutual information over a finite time horizon to enable a team
of robots to estimate the location of a mobile target using
range-only sensors. To enable calculation of our policy in real-
time, we develop an approximation of the belief. By proving
a relationship between the Kullback-Leibler divergence of
certain distributions and their entropies, we show that the
errors introduced by our approximation are bounded for range
based Gaussian measurement models. We also develop a
theoretical design criterion for generating motion primitives
by connecting the incremental motions the team makes to
the variance of the measurement model. We validated our
approach using simulations and real world experiments in
which a team of robots successfully track a mobile target.
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APPENDIX
A. Proof of Lem. I (Entropy Upper Bound for Mixture Models)

See Huber et al. [11, Theorem 3]. They use Gaussian
densities, but their proof works for general mixture models.

B. Proof of Lem. 2 (Entropy Lower Bound for Mixture Models)
Starting from the differential entropy of f and expanding:

H[f] :/Zﬂfi(if)logwdx

R Y O (P (1) N R SRS S
*; z/<f1( )1 ngnjfj(x)+f’( )1 gﬂ(x)) d
= m (KL{fi || f] + HIf)) @®)

KL[f; || f] is non-negative [3]; dropping it obtains the bound.

C. Proof of Lem. 3 (KLD Bound on Entropy for Gaussians)

Let f(z) = N(x;pp,Xy) and g(z) = N(z;pg, Xg).
The entropy of a Gaussian with covariance X is
1/21og((2me)* det ) and so:

1
H[f] — H[g] = 5 log det I )

Both E;l and Xy are symmetric positive definite (SPD) so
all the eigenvalues of 2;12 ¢ are strictly positive [9, Theorem
7.6.3]. Defining \; > 0 as the ™ eigenvalue of ¥, '¥; we
rewrite (9) as 1/23 . log A;.

The KL divergence between f and g bounds this quantity.
Starting from the closed form expression:

2KL[f || g] + k = tr (£, 'Sy) — logdet (X, ' Sy)
+(ng = 1p) "S5 (g — g)
> tr (3, 'S¢) —logdet (3, '%y)

=> (A —log ) (10)

The inequality holds because Z;l is SPD. Because log \; <
Ai — log \; we know KL[f || g] + k/2 upper bounds the dif-
ference of entropies. Similarly, we can apply —(\; —log \;) <
log A; to obtain a lower bound. Combining the bounds we have
|H[f] — Hlg]| <KL[f || g] + /2.

KL divergence is not symmetric [3], so we complete the

proof by repeating the same steps for KL[g || f].
D. Proof of Thm. 1 (KLD Bound on Entropy for GMMs)

From Lems. 2 and 1:
M
H[f] — H[g] < H]n] +Z7Ti(H[fi] —Higi]) (11)

Swapping the order of f and g and repeating the same steps
results in a lower bound on the entropy difference:

—Hr] + Zﬁi(H[fi] —Hlg:]) <H[f] -H[g] (12

Taking absolute values of (11) and (12) and applying Lem. 3
completes the proof.
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