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Abstract—Three-axis magnetometers and three-axis ac-
celerometers are widely used sensors for attitude estimation, yet
their accuracy is limited by sensor measurement bias. This paper
reports a novel methodology for estimating the sensor bias of
three-axis field sensors (e.g. magnetometers and accelerometers).
Our approach employs three-axis angular velocity measurements
from an angular-rate gyroscope to estimate the three-axis field
sensor measurement bias that, when properly calibrated, can sig-
nificantly improve attitude estimation. We report three methods
implementing this approach based on batch linear least squares,
real time Kalman filter, and real time adaptive identification. Our
methods impose less restrictive conditions for the movements of
the instrument required for calibration than previously reported
methods, do not require knowledge of the direction of the field
(e.g. the local magnetic field) or the attitude of the instrument,
and also ensure convergence for the estimated parameters.
The proposed methods are evaluated and compared with the
previously reported methods with numerical simulation and in
comparative experimental evaluation with sensors onboard an
underwater robot vehicle.

I. INTRODUCTION

Magnetometers, accelerometers, and angular-rate gyro-
scopes are widely used in many applications including vehicle
navigation systems (e.g., space, air, ground, and marine vehi-
cles) and in personal electronics devices such as smart-phones
and tablet devices. Magnetometers are commonly used to
measure Earth’s local magnetic field vector and thus determine
the device heading. Accelerometers are commonly used to
measure the device’s inclination with respect to the Earth’s
local gravity vector and thus determine the local horizontal
plane and vertical direction — i.e. roll and pitch. Angular-rate
gyroscopes measure the angular rotation rate of the device.
Currently many integrated devices incorporate angular-rate
gyroscopes combined with accelerometers and magnetometers
to enable estimation of the full attitude (e.g., heading, pitch
and roll) of the instrument. Several methods are available
to estimate the attitude with these sensors — see the recent
Crassidis et al.’s review of attitude estimation methods [6].
All of these sensors are affected by biases, scale factors, and
non-orthogonality of their measurements. Sensor calibration

is critical for accurate performance of attitude estimation with
these devices.

Magnetometers are highly affected by magnetic field dis-
turbances that can cause erroneous measurements that can
change over time. For magnetometers applications in which
continuous calibration is required for accurate performance,
real time, adaptive sensor bias estimation is desirable.

Several approaches for magnetometers calibration have been
reported that estimate the calibration parameters without the
use of additional references sensors. Traditional approaches in-
clude approximated solutions such as the conventional heading
swing method, e.g., [5]. Recently, several reported methods
have addressed more rigorously the three-axis magnetome-
ter calibration problem. The problem of self-calibrating a
three-axis magnetometer without external reference, can be
formulated as a minimization problem that requires iterative
methods to solve for the calibration parameters. For estimating
magnetometers bias, Gambhir proposed a “centered” approxi-
mation that can be solved with linear least squares [8]. Alonso
and Shuster proposed, the “TWOSTEP” method, that uses
Gambhir’s solution as initialization to an iterative second step
for estimating the sensor bias [2], and, as reported in a later
work, also estimates the scale and orthogonality factors [3].
In a similar approach, Vasconselos et al. [20] formulate the
problem as an ellipsoid fitting problem, and solve it using
an iterative maximum likelihood estimate (MLE) method. For
practical implementation in different applications there are
some limitations to these methods. In general, all of these
calibration methods require large angular movements of the
instrument to measure a large section of the magnetic sensor
output for an accurate calibration. For better performance
it is necessary to know accurately the local magnitude of
the Earth’s magnetic field. This value can be calculated by
magnetic field models, e.g. [16], but can present large error
in environments with unmodeled magnetic distortions (e.g.,
due to buildings or other local magnetic anomalies). Finally
these methods are formulated for batch estimation and are not
practical for continuous real time operation.



Many applications require the ability to perform the field
sensor calibration in continuously real time due to (1) the
calibration parameters changing during operations (e.g., due
to change in vehicle payload) or (2) local field disturbances
that render it impossible to estimate the calibration parameters
before operation (e.g., for an underwater vehicle deployed
from a large steel ship). Crassidis and Lai, [7], propose an
extension to the TWOSTEP method based on the extended
Kalman filter (EKF) and the unscented Kalman filter (UKF)
to estimate in real time the sensor bias, scale, and orthogonality
factors. Ma and Jiang proposed an alternative method based on
the UKF, [15], and Guo at al., [9], reported an EKF approach.
These methods exhibit some of the same problems noted for
the batch methods, and also do not ensure convergence of the
estimated parameters to the true values.

Although inertial sensors are commonly available with mag-
netometers in a combined instrument package, most previous
reported methods for calibrating magnetometers do not utilize
these additional sensors. Li and Li [14] and Kok et al. [13]
make use of the accelerometers to measure the local gravity
vector to propose methods based on dot product corrections
to estimate the magnetometer calibration. The drawback of
these approaches based on acceleration measurements is that
translational accelerations of the instrument can perturb the
measurements introducing errors in the the magnetometer
calibration.

As noted with previous methods there are several barriers
that limit their wide implementation: they require large angular
movements, they require accurate knowledge of the magnitude
of the local magnetic field, and they are only available as batch
methods or do not ensure convergence properties. The current
paper reports a novel approach to the problem of accurate
real time adaptive estimation of the sensor bias in three-
dimensional field sensors. Our approach employs three-axis
angular velocity measurements from an angular-rate gyroscope
to estimate the field sensor bias of a three-axis magnetometer
or three-axis accelerometer. Three methods are proposed based
on this novel approach: one based on linear least squares, one
Kalman filter approach, and one novel adaptive identification
approach. Our main motivation is for the problem of mag-
netometers sensor bias, but it can also apply to other field
sensors such as three-axis accelerometers. The novel proposed
solution does not, at present, estimate scale and orthogonality
factors, but can be extended to these cases. But the proposed
approach presents several advantages: (1) it is less restricted in
the angular movements required, (2) it does not require local
field information, such as the magnitude and/or direction of
the local magnetic field, (3) it is implementable in real-time,
and (4) it has provable convergence properties.

This paper is organized as follows. In Section II we give
a brief overview of notation and describe the sensor error
model. In Section III we describe our proposed methods
for sensor bias estimation. In Section IV we describe our
experimental setup and we report a comparative numerical
simulation and comparative experimental evaluation of the
performance of the different sensor bias estimation methods.

Section VI summarizes and concludes.

II. BACKGROUND

A. Mathematical Notation

We represent the rigid body attitude using the rotation ma-
trix R(t) ∈ SO(3) describing the orientation of the instrument
frame V with respect to an inertial (world) fixed frame W .

Let ω = [ωx, ωy, ωz]> ∈ R3 and define S : R3 → R3×3

S(ω) =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (1)

The euclidean vector norm is defined as usual as
||x|| = (x>x)

1/2, with x ∈ R3.

B. Sensor Error Model

Three-axis magnetometers and accelerometers are widely
used in navigation applications. Measurements from these
sensors are subject to systematic errors due to sensor bias,
scale factor and (lack of) orthogonality. We consider the usual
model for sensing bias

x(t) = x̄(t) + b (2)

where x̄(t) ∈ R3 is the true field value in the instrument
reference frame, x(t) ∈ R3 is the measured field value in
the instrument reference frame, and b ∈ R3 is an unknown
constant sensor bias.

Multi-axis field sensors such as magnetometers and ac-
celerometers measure, in instrument coordinates, the Earth’s
local magnetic field or gravity vector, respectively, which are
each considered to be locally constant and fixed with respect
to the inertial world frame of reference. The true fixed world-
frame field vector x0 is related to the instrument-frame sensor
measurement of the field x̄(t) by

x0 = R(t) (x(t)− b). (3)

In the case that the attitude of the instrument, R(t), and the
true field vector, x0, are both known accurately, then solving
for the unknown sensor bias, b, is trivial.

In many practical cases, however, such as the case of the
ubiquitous micro-electro-mechanical systems (MEMS) inertial
measurement units (IMUs) that are widely used in vehicle
navigation systems, R(t) is not directly instrumented — thus
the trivial calibration solution is not applicable for these
devices. MEMS IMUs are typically equipped with a 3-axis
magnetometer, a 3-axis accelerometer, a 3-axis angular-rate
gyroscope, and a temperature sensor.

III. PROPOSED METHODS

In this section, we report a novel approach to estimate
the sensor measurement bias error in 3-axis field sensors
(e.g. magnetometers) based on the instrument-frame angular-
rate measurements (e.g., from angular-rate gyroscopes). Three
methods based on this approach are proposed.



A. System Model

Differentiating (3), yields

0 = Ṙ(t) (x(t)− b) +R(t) ẋ(t). (4)

Using the the standard equation Ṙ(t) = R(t)S(w(t)) and
rearranging the terms, we have

ẋ(t) = −ω(t)× (x(t)− b), (5)

where w(t) is the measured angular-rate in instrument coordi-
nates, and × is the standard cross product operator. Note that
the instrument attitude, R(t), does not appear in (5).

We wish to estimate the constant unknown sensor bias, b, for
the system (5) from the signals ω(t) and x(t). The proposed
solutions include (i) a batch least squares method, (ii) a real
time Kalman filter method, and (iii) a novel real time adaptive
identification method.

B. Linear Least-Squares for Sensor Bias Calibration

The unknown sensor bias, b, can be estimated with linear
least squares estimation. The sum of squared residuals cost
function is

SSR(b) =

n∑
i=1

1

σ2
i

|ẋi + ωi × (xi − b)|2, (6)

where σi is variance of the measurement, and each measure-
ment xi is a discrete sample measurement (e.g., xi represents
a discrete-time sampling of x(t)). The linear least squares
estimate for b is given by

b̂ = argmin
b∈R3

SSR(b)

= (

n∑
i=1

1

σ2
i

W 2
i )−1(

n∑
i=1

1

σ2
i

Wi yi), (7)

where Wi ∈ R3×3 is the skew-symmetric matrix from the
measurements ωi, Wi = S(wi), and yi ∈ R3 is the calculated
vector from the measurements, yi = ẋi+ωi×xi. The solution
(7) exists when the set of measured angular velocity vectors,

[ω1, ω2, · · ·ωn] are not all collinear, in consequence, (
n∑

i=1

W 2
i )

is invertible.
A drawback of this approach is that it requires the signal

ẋ(t) that is not directly instrumented in magnetometers and ac-
celerometers, and thus this approach requires (possibly noisy)
numerical differentiation of the sensor measurement x(t).

C. Kalman Filter for Sensor Bias Calibration

The system (5) can be rewritten as[
ẋ

ḃ

]
︸︷︷︸

Φ̇

=

[
−S(ω) S(ω)

0 0

]
︸ ︷︷ ︸

A(t)

[
x
b

]
︸︷︷︸

Φ

, (8)

with the measurement model

z = [I 0]︸ ︷︷ ︸
H

[
x
b

]
, (9)

we can define the following time-varying system

Φ̇(t) = A(t) Φ(t) + ν1(t), ν1(t) ∼ N (0, Q),

z = HΦ + ν2(t), ν2(t) ∼ N (0, R).
(10)

After a discretization of the continuous-time system the sensor
bias estimation can be solved with a standard discrete-time
Kalman filtering implementation [11], [19] that does not
require differentiation.

D. Adaptive Identification for Sensor Bias Calibration

The unknown sensor bias, b, can be estimated on-line with
a novel adaptive identification algorithm which, to the best of
our knowledge, has not been previously reported. A possible
advantage of this adaptive approach is that it does not require
numerical differentiation of the sensor measurement x(t).

Consider the following adaptive observer for the plant of
the form (5)

˙̂x(t) = −ω(t)× (x̂(t)− b)− k1 ∆x

˙̂
b(t) = k2 (ω ×∆x)

, x̂(0) = x̂0

, b̂(0) = b̂0,
(11)

where estimation errors are defined as

∆x(t) = x̂(t)− x(t), ∆b(t) = b̂(t)− b. (12)

Given the measured angular-rate signal, ω(t), and biased 3-
axis field sensor measurement, x(t), our goal is to construct
an estimate of b̂(t) of the unknown sensor bias parameter b
such that: 1) all signals remain bounded, and 2) b̂(t) converge
asymptotically to b, i.e. limt→∞∆b(t) = 0.

Before deriving the adaptive identifier, we first review some
results required later.

Definition 1 (Persistent Excitation (PE) [18]). A matrix
function W: R+ → Rm×m is persistently exciting (PE) if
there exist T, α1, α2 > 0 such that for all t ≥ 0:

α1 Im ≥
∫ t+T

t

W(τ)W>(τ) dτ ≥ α2 Im (13)

where Im ∈ Rm×m is the identity matrix.

Lemma 1 (Barbalat’s Lemma [12]). Let φ : R → R
be a uniformly continuous function on [0,∞). Suppose that
limt→∞

∫ t

0
φ(τ) dτ exists and is finite. Then, φ(t) → 0 as

t→∞.

We assume the following:

Assumption 1. There exist three positive constants c̄1, c̄2, and
c̄3 such that ∀t: |ω(t)| ≤ c̄1, |ω̇(t)| ≤ c̄2, and |x(t)| ≤ c̄3.

We can now state the main result for the adaptive identifier.

Theorem 1 (Sensor Bias Observer). Consider the system
(5) with time-varying ω(t) and x(t). Let (x̂, b̂) denote the
solution to (11) with k1, k2 > 0 positive gains, and ω(t)
satisfying the Assumption 1, and is PE as defined in Definition
1. Then the equilibrium (∆x,∆b) = (0, 0) of (11) is globally
asymptotically stable.



Proof: From (11) and the estimation errors definition (12),
the error system is

∆ẋ(t) = −ω(t)× (∆x(t)−∆b(t))− k1 ∆x

∆ḃ(t) = −k2 (ω(t)×∆x).
(14)

Consider the Lyapunov candidate function

L =
1

2
||∆x||2 +

1

2 k2
||∆b||2 (15)

where L is a smooth, positive definite, and radially unbounded
function by construction. Taking the time derivative and recall-
ing (14) yields

d
dtL = ∆x>[−ω × (∆x−∆b) + k1 ∆x] + ∆b>(ω ×∆x)

= −k1 |∆x|2 ≤ 0. (16)

The time derivative of this Lyapunov function is negative
semi-definite, thus guaranteeing global stability of the system,
but additional arguments are needed to show global asymptotic
stability. Given that the Lyapunov function (15) is bounded
below by 0 and, in consequence of (16) is bounded above by
its initial value, Lt0 , and since (15) is a radially unbounded
function of ∆x(t) and ∆b(t), we can conclude that ∆x(t)
and ∆b(t) are bounded. Note that ω(t) is bounded from
Assumption 1. From (14) and the fact that all signals on
the right hand side of (14) are bounded then ∆x(t) and
∆b(t) are continuous and, in addition, ∆ẋ(t) and ∆ḃ(t) are
bounded, thus ∆x(t) and ∆b(t) are uniformly continuous. For
any t ≥ 0, we have (

∫ t

0
|∆x(τ)|2 dτ)

1/2 ≤ ( 1
k1
Lt0)

1/2 then
∆x(t) ∈ L2. Thus from Barbalat’s lemma, ∆x(t) is globally
asymptotically stable at the origin, i.e. limt→∞∆x(t) = 0.
Given that limt→∞∆x(t) = 0, from (14) and the boundedness
of ω(t), it proves that limt→∞∆ḃ(t) = 0. Moreover, since
by assumption ω(t) is PE and satisfies Assumption 1, using
lemma A.1 from [4], we can conclude globally asymptotically
stability for ∆b(t), i.e. limt→∞∆b(t) = 0.

IV. PERFORMANCE EVALUATION

This section reports implementation details, discusses the
evaluation methodology used to compare all the methods, and
reports a comparative numerical simulation and comparative
experimental evaluation of the performance of the different
sensor bias estimation methods.

A. Evaluation Methodology

We compared the performance of the following six meth-
ods for the problem of sensor bias estimation. Three batch
estimation methods were evaluated:

a. Centering: For comparison purposes, the sensor bias is
estimated using the first step of the TWOSTEP method
[2] that leads to a simple batch linear least squares
solution.

b. TWOSTEP: For comparison purposes, the sensor bias is
estimated using the full TWOSTEP method [2].

c. SAR-LS: The sensor bias is estimated using the batch
method proposed in section III-B based on angular-rate

in the instrument-frame. The value of ẋ is numerically
calculated by a first-order numerically differentiation of
x. Furthermore the measurements are low-pass filtered to
reduce noise resulting from differentiation.

In addition, three real time methods were evaluated:
d. AI-EKF: For comparison purposes, the sensor bias is

estimated using the real-time attitude independent method
based on the EKF [7]. Note that for an accurate compar-
ison the implemented version of this method only esti-
mates the sensor bias, and not the scale and orthogonality
matrix.

e. SAR-KF: The sensor bias is estimated using the Kalman
filter method described in section III-C based on angular-
rate in the instrument-frame.

f. SAR-AID: The sensor bias is estimated using the adaptive
identification method proposed in section III-D based on
angular-rate in the instrument-frame.

For comparison purposes for the case of the real-time esti-
mation methods (AI-EKF, SAR-KF and SAR-AID) the sensor
measurement bias used for comparing with the batch methods
consists of the average of the last 20% of the estimated sensor
measurement bias.

The TWOSTEP and AI-EKF methods require knowledge of
the local magnetic field magnitude. In our evaluation we used
the standard US/UK World Magnetic Model for 2010-2015,
[16], available online [1].

B. Simulation Results

A Monte Carlo simulation evaluation was implemented with
100 iterations for each of two datasets. The first dataset,
SIM1, simulates the case of large angular movements of the
instrument in all degrees of freedom, depicted in Figure 1(a).
The second dataset, SIM2, simulates a constrained angular
movement of the instrument, depicted in Figure 1(b). The
duration of each experiment is 60 s and the simulated sensor
data is generated at 100Hz. Gaussian noise was added to
the measurements of the magnetometers (σmag = 1mG)
and angular-rate gyroscopes (σgyro = 5mrad/s). The true
magnetic field vector is x0 = [200, −40, 480]> mG and
the bias is b = [20, 120, 90]> mG. The magnitude of the
magnetic field used for the TWOSTEP and AI-EKF methods
was 1% greater than the value used in generating the simulated
data. We have empirically selected the gains to obtain the
best performance for each method under these The covariance
matrices used by the AI-EKF and SAR-KF methods are
Q = 0.1I6×6 mG and R = I3×3 mG. These values were
chosen in the range of the expected process and sensor noises.
The gains used by the SAR-AID method are k1 = 1, k2 = 1
for the SIM1 and k1 = 1, k2 = 100 for SIM2. These
estimator gains were chosen empirically for the range of the
instrument angular-rate for each experiment. Figure 2 shows
the estimation performance for each simulated experiment.

The simulation results show that for a complete range
of movements, SIM1, the batch methods Centered and
TWOSTEP methods show the best performance. Although



(a) Simulation Data SIM1 (b) Simulation Data SIM2

Fig. 1. Magnetometers simulated data: Three-dimensional plot of the
magnetometers simulated data (black dots). As a reference a sphere is plotted
centered at b. The large reference-frame is at (0,0,0) with x-axis in red, y-axis
in green, and z-axis in blue. A small reference-frame is plot at the center of
the sphere.

(a) Simulation results from SIM1

(b) Simulation results from SIM2

Fig. 2. Performance evaluation results from simulated data: The y-axis shows
the sensor bias estimation error for each solution (mG) in logarithmic scale.
Each box plot is calculated from 100 iterations.

the proposed methods also estimate the magnetometer bias
with an error under 1 mG. The worse performance is shown
by AI-EKF method with bias estimation errors over 5 mG.
The AI-EKF method is affected by linearization errors and
does not ensure convergence. For the second dataset with a
limited range of movements, SIM2, the SAR-LS, SAR-KF

Fig. 3. JHU ROV inside the Johns Hopkins Hydrodynamic Test Facility

and SAR-AID methods show the best performance, with bias
estimation errors under 2-3 mG. The other methods (Centered,
TWOSTEP and AI-EKF) show a bias estimation error over 10
mG. Note that the TWOSTEP and AI-EKF methods are very
sensitive to errors in a priori, known value of the magnitude
of the local magnetic field. For small movements experiments
(such as SIM2), we notice that the sensor bias estimation
error grows proportionally to the error in the magnitude of
the magnetic field. In our simulation performance evaluation,
an error in the magnitude used for estimation is introduced
representing a 1% of the real magnitude. But for common
applications, the difference between the local magnitude of
the magnetic field and the predicted by the model can include
order of magnitude higher errors (such as inside/near buildings
or other unknown magnetic anomalies).

It is interesting to notice that the required processing time
for SAR-KF estimation was on average 5 times greater than
the SAR-AID, and 6 times greater than the SAR-LS. This is
due to the fact that the Kalman filter implementation is more
demanding computationally than the implementation of the
adaptive identification method.

These simulation results support the utility of all proposed
methods. In the next section we evaluate the performance for
experimental data.

C. Experimental Results

This section reports the results of a comparative experi-
mental performance evaluation of the six calibration methods
in full-scale experimental trials of an remotely operated un-
derwater vehicle (ROV) equipped with a MEMS IMU. The
ROV is shown in Figure 3. The facility contains a 7.5 m
diameter × 4 m deep indoor fresh water tank made of steel.
The ROV is actuated by six 1.5 kW DC brushless electric
thrusters and can be actively controlled in six degrees of
freedom (DOF). A suite of sensors commonly employed in
deep submergence underwater vehicles is present on the ROV.
For our experimental performance evaluation we use a MEMS
based IMU, the Microstrain 3DM-GX3-25 [17]. The internal



(a) Experimental Data from
EXP1

(b) Experimental Data from
EXP2

Fig. 4. Experimental evaluation data: Three-dimensional plot of the mag-
netometers recorded data for each experiment (black dots). As a reference a
sphere is plotted centered at b∗. The large reference-frame is at (0,0,0) with
x-axis in red, y-axis in green, and z-axis in blue. A small reference-frame is
plot at the center of the sphere.

magnetometer’s noise level is σmag = 1mG and angular-
rate gyroscope’s noise level is σgyro = 5mrad/s. Data was
sampled and recorded at 100 Hz. For comparing the heading
estimation performance, we used a high-end inertial navigation
system (INS), the iXBlue PHINS III [10], as “ground-truth”.
The PHINS provides heading with 0.1◦ dynamic accuracy,
and pitch/roll with 0.1◦ dynamic accuracy. The high-end INS
attitude data was re-sampled to the MEMS IMU sampling time
to estimate the vehicle heading position.

Two experiments were performed. The first experiment,
EXP1, measure a large range of movements, Figure 4(a). The
trajectory is a sequence of 720◦ heading rotations, with differ-
ent levels of pitch (±25◦). These trajectories are not feasible
to implement in many ground, marine, or aerial vehicles. The
second experiment, EXP2, measure a more feasible sequence
of movements, Figure 4(a), where the range of movement of
the vehicle is limited in pitch (±10◦) and roll (±5◦). In these
experiments the vehicle followed pre-programmed trajectories
under closed-loop control.

Although the magnetometer sensor bias is unknown for
the magnetometers in this vehicle configuration, using a least
square method it is possible to estimate the bias and the
orthogonality scale factors based on the known attitude from
the high-end INS. The analysis show that the magnetometer
measurements are in an ellipsoid very close to the sphere.
The calculated orthogonality matrix, M∗, and bias, b∗, for
this vehicle configuration are the following

M∗=

0.991 −0.002 −0.005
0 0.996 0.018
0 0 1.014

 b∗=

 20.0
130.5
102.1

mG.
For our analysis the estimation is performed for all the
evaluated methods using raw measurements from the sensor
including the measured orthogonality and scale factor distor-
tions.

The magnetometers bias was estimated with each evaluated
method using data from EXP1 and EXP2. From each estimated

magnetometers bias, b̂i, we calculate the error with respect
to b∗, although this is not a very accurate metric, due to
error in b∗. As a more accurate performance comparison, we
can calculate the heading error, between the heading from
the magnetometers with the estimated bias b̂i removed, hgdi,
and the heading from the high-end INS sensor, hdgREF .
For a more accurate heading comparison, we use the same
data, EXP1, although the sensor bias estimation is estimated
from both datasets, EXP1 and EXP2. Table I summarizes the
experimental results.

Fig. 5. Heading performance using EXP2 for estimation and EXP1 for
evaluation: The y-axis shows the heading error for the corresponding reference
heading from the high-end INS (x-axis). In light red the original heading error
and in dark blue the heading error after calibration for each evaluated sensor
bias estimation method. All units in degrees.

From the performance evaluation in Table I, the SAR-
LS, SAR-KF, and SAR-AID methods show a very good
performance in both experiments, with a the lowest error in the
sensor bias estimation (∼10 mG), and excellent performance
correcting the heading error from the original 27◦ range to
less than 2◦ in some cases. On the other hand, the Centered
and TWOSTEP methods while show a good performance for
the first large angular movements experiment, these methods
have a less accurate performance for a more limited calibration
dataset. For EXP2, the Centered and TWOSTEP methods
show error that is half of the original error with EXP1.
AI-EKF, like in the numerical simulations, shows the worse
performance of the evaluated methods, although is still able
to estimate the bias and improve the heading estimation, but
not as good as the proposed methods (SAR-LS, SAR-KF,
and SAR-AID). Figure 5 shows the heading error for the
TWOSTEP method and the three proposed methods (SAR-



TABLE I
SUMMARY OF THE SENSOR BIAS ESTIMATION RESULTS FROM EXP1 AND EXP2. BEST TWO PERFORMANCES IN EACH RELEVANT COLUMN IS MARKED

IN BOLD FONT.

EXP1

b̂x b̂y b̂z |b̂− b∗| σ(hdgE)
[mG] [mG] [mG] [mG] [degrees]

Raw 0.000 0.000 0.000 166.897 27.362

Centered [2] 21.945 123.870 85.770 17.732 2.377

TWOSTEP [2] 21.940 123.867 85.668 17.826 2.378

SAR-LS 21.050 130.370 94.302 7.870 3.340

AI-EKF [7] 17.490 122.283 9.244 93.253 5.547

SAR-KF 21.486 130.041 100.846 1.998 3.238

SAR-AID 21.265 130.364 93.475 8.718 3.349

EXP2

b̂x b̂y b̂z |b̂− b∗| σ(hdgE)
[mG] [mG] [mG] [mG] [degrees]

0.000 0.000 0.000 166.897 27.362

18.242 136.132 79.734 23.132 4.719

18.246 136.184 78.541 24.298 4.753

19.895 131.036 98.571 3.571 3.435

18.762 138.095 12.162 90.266 7.409

21.501 118.953 104.425 11.874 1.897

21.539 119.456 105.742 11.730 1.923

LS, SAR-KF, and SAR-AID).
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Fig. 6. Magnetometer bias estimation over time for EXP2: The x-axis shows
the time (min) and the y-axis the estimated bias for each method (mG).
In segmented red the AI-EKF method, in segmented dot blue the SAR-KF
method, and in solid green the SAR-AID method.

Figure 6 shows the sensor bias estimation over time for
the three real time evaluated methods (AI-EKF, SAR-KF, and
SAR-AID) for EXP2. The results show that all the methods
converge quickly in bx and by due to the nature of the
excitation with large heading movements. But the term bz ,
is correctly estimated only for SAR-EKF and SAR-AID but
not for AI-EKF.

V. CONCLUSIONS

The proposed angular-rate aided estimation methods (SAR-
LS, SAR-KF, and SAR-AID) were shown to improve the

sensor bias estimation performance under some circumstances
when compared with the previously reported methods (Cen-
tered, TWOSETP, and AI-EKF).

The numerical simulation and experimental results quan-
tified the sensor measurement bias estimation performance
under different scenarios of calibration motions. The pro-
posed method, SAR-LS, SAR-KF and SAR-AID, show good
performance for all the evaluated scenarios. The previously
reported methods, Centered, TWOSETP, and AI-EKF, show
good performance only when the data represent large in-
strument angular motion. In addition, TWOSTEP and AI-KF
methods require exact knowledge of the magnitude of the local
magnetic field vector, and are very sensitive to error in this
value.

The comparative experimental evaluation quantified the
resulting calibrated heading estimation performance when
compared with the heading reported by a high-end INS. The
proposed method, SAR-LS, SAR-KF and SAR-AID, show
significantly smaller heading error after calibration than all the
previously reported methods for the case of a more feasible
sequence of calibration movements for most ground, marine,
or aerial vehicles. Finally the proposed methods (SAR-LS,
SAR-KF, and SAR-AID) ensure convergence to the estimated
sensor bias value while the real time method, AI-EKF, does
not ensure convergence to the true values.

In the future, we plan to improve the gain selection for some
of the proposed methods and to perform further analysis under
different conditions and applications.

These results may be useful to improve the performance of
low-cost MEMS-based attitude sensors and, in consequence,
improve the navigation accuracy for low-cost ground, marine,
or aerial vehicles.
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