
Goal Assignment and Trajectory Planning
for Large Teams of Aerial Robots

Matthew Turpin
GRASP Lab

University of Pennsylvania
mturpin@seas.upenn.edu

Kartik Mohta
GRASP Lab

University of Pennsylvania
kmohta@seas.upenn.edu

Nathan Michael
The Robotics Institute

Carnegie Mellon University
nmichael@cmu.edu

Vijay Kumar
GRASP Lab

University of Pennsylvania
kumar@seas.upenn.edu

Abstract—This paper presents a computationally tractable,
resolution-complete algorithm for generating dynamically feasi-
ble trajectories for N interchangeable (identical) aerial robots
navigating through cluttered known environments to M goal
states. This is achieved by assigning the robots to goal states
while concurrently planning the trajectories for all robots.
The algorithm minimizes the maximum cost over all robot
trajectories. The computational complexity of this algorithm
is shown to be cubic in the number of robots, substantially
better than the expected exponential complexity associated with
planning in the joint state space and the assignment of goals to
robots. This algorithm can be used to plan motions and goals
for tens of aerial robots, each in a 12-dimensional state space.
Finally, experimental trials are conducted with a team of six
quadrotor robots navigating in a constrained three-dimensional
environment.

I. INTRODUCTION

This paper addresses the problem of simultaneously finding
optimal paths and assignments of aerial robots to goals in a
setting where robots are identical, and in which it is desirable
to minimize the maximum cost over all robot trajectories. This
problem is relevant to missions with many tasks that have
to be performed as quickly as possible and the tasks can be
performed in parallel. In such settings, the cost function may
need to reflect the maximum effort over all robots or the the
maximum distance traveled by a robot. This is particularly
important in first-response and search-and-rescue applications
in which a number of robots must visit, for example, all of
the rooms in a building. A constraint on the fuel or energy
that can be spent on the mission leads quite naturally to a
setting where we want to minimize the maximum cost. In such
conditions, we are also interested in completeness. We would
like the algorithm to find a solution when one exists, even
though the solution may not be the optimal solution. Finally,
it is necessary to find trajectories that are safe. We want robots
to avoid collisions with the environment and with other robots.

Optimal trajectory planning for multiple robots with col-
lision avoidance can be performed by a conventional path
planner simply by planning in the joint state space. Of course,
the computational complexity typically grows exponentially
with the number of robots [2]. One approach studied to counter
this growth is to decouple the path planning from the speed
at which each path is traversed [2, 5]. Similarly, it is possible
to plan trajectories using probabilistic roadmaps and random

prioritization [21]. As decoupled approaches are generally not
complete, several approaches seek to balance coupled and
decoupled formulations in pursuit of completeness with com-
putational tractability [8]. Additionally, computational tech-
niques such as subdimensional expansion [23, 22] can be
employed to mitigate increased computational complexity by
selectively expanding the higher-dimensional state space as
required. Other approaches switch robot positions until robots
can easily navigate to goal positions without collision [16, 12],
however these can result in extremely lengthy paths.

An alternative strategy is to formulate multi-robot coor-
dination and collision avoidance as reactive control or local
coordination problems. Both navigation functions [11] and
the decentralized collision avoidance method proposed in [20]
enable a robot team to navigate to an assigned set of goals
and scale well with the number of agents but lack safety and
optimality guarantees for systems with higher-order dynamics.

We approach the problem as one of task allocation as devel-
oped in the operational research community in the context of
finding an optimal assignment of workers to goals [7] . This
has recently been applied to multi-robot task allocation [3] and
trajectory planning [6, 10, 18, 9]. As shown in [18, 24], cou-
pling goal assignment with trajectory planning paradoxically
reduces the complexity.

This paper, following the authors’ previous work [19],
considers the problem of simultaneously planning trajectories
and goal assignments for idealized interchangeable robots with
initial and final deployment states at rest in an environment
with static obstacles. In this work (and in departure from [19]),
we propose a complete algorithm for Goal Assignment and
Planning (GAP) that computes optimal trajectories and as-
signments of robots to goals with complex vehicle dynamics
and cost functions. The performance of the algorithm is
studied in simulation for large teams in complex and cluttered
environments and experimentally with a team of six quadro-
tor vehicles. These experimental results demonstrate that the
proposed algorithm allows the generation of feasible, safe
trajectories for dynamic systems in tightly constrained three-
dimensional environments.

II. PRELIMINARIES

Let the set of integers between 1 and z be represented by:

Iz ≡ {1, 2, . . . , z}

Let the state of robot i be designated by xi ∈ X where X
is the state space of a single robot. The set of all points in
Euclidean space occupied by robot i is represented by the open
set B(xi) ⊂ R3. With slight abuse of notation, B(x(t)) ⊂ R3

is the set of all points swept out by trajectory x(t) ∈ X . The
initial state of robot i ∈ IN will be designated as si = xi(0).
Similarly, gj specifies the j ∈ IM desired goal state.

The assignment of robots is represented by the mapping
φ : IN → IM ∪ 0 where each goal can be assigned to a
maximum of one robot:

φi =

{
j if robot i is assigned to goal j
0 otherwise

A directed graph G = (V,E) is constructed by sampling the
state space using either a deterministic or probabilistic planner
such as a Probabilistic Roadmap (PRM) [4]. Each vertex vi ∈
V represents a valid, collision-free state in X and V must
contain all starting and goal states:

si ∈ V ∀ i ∈ IN , gj ∈ V ∀ j ∈ IM (1)

An edge eij ∈ E corresponds to a collision free trajectory
segment τij(t) where τij(t0) = vi, τij(tf) = vj and has
cost C(τij) > 0. The underlying dynamics of the system
will determine how to best compute these segments. Possible
cost functions C include distance traveled, energy used, and
trajectory duration.

The graph cannot include edges ekl corresponding to tra-
jectories τkl that can cause collisions with states si or gj ,
unless one of the vertices of the edge (vk or vl) is si or gj ,
respectively:

vk 6= si AND vl 6= si =⇒ B(τkl) ∩B(si) = ∅
vk 6= gi AND vl 6= gi =⇒ B(τkl) ∩B(gi) = ∅ (2)

For example, a regular orthogonally-connected grid for
spherical robots satisfies Eq. (1) and Eq. (2).

A path in the graph G is represented by an ordered list of
the edges in the graph, P (vi, vj) = {eik, ekl . . . , emn, enj}.
The cost of a path in the graph is represented using the norm:

||P (vi, vj)|| =
∑

ekl∈P (vi,vj)

C(τkl)

The optimal path is that which minimizes the sum of costs of
edges between vertices:

P ?(vi, vj) = arg min
P (vi,vj)

||P (vi, vj)||

The corresponding trajectory for a path from the graph can be
constructed by the concatenation of trajectory segments. For
example, γij(t) is the optimal trajectory from si to gj and can
be written as the sequence: γij = {τik, τkl, . . . , τmn, τnj}.

Sufficient Conditions for Resolution Completeness: As a
result of this algorithm decoupling trajectory generation and
time parameterization, there are conditions which must be met
to ensure resolution completeness.

si

sj

Fig. 1. Example of poor initial conditions for circular robot j which do not
satisfy (3). The starting state of robot j has boundaries in free configuration
space for which there exists no trajectory from sj . In this example, robot i
is now unable to pass through the passage.

The set of all valid states which share a boundary with
vertex vk can be defined as:

Vk = {v
∣∣cl(B(v)) ∩ cl(B(vk)) 6= ∅, B(v) ∩B(vk) = ∅}

where cl(·) is the closure of the set.
The following are conservative sufficient conditions for

resolution completeness:

∃τij
∣∣vi = si,∀vj ∈ Vi, B(τij)∩B(sk) = ∅ ∀ k ∈ IN \ i (3)

∃τij
∣∣vi = gi,∀vj ∈ Vi, B(τij)∩B(gk) = ∅ ∀ k ∈ IN \ i (4)

In words, these state that each robot at its start or goal is able
to design a trajectory to any state in the configuration space
which shares a boundary with that start or goal, respectively
without collision with another start or goal condition. These
conditions prevent a robot modifying shape of the configura-
tion space for other robots. See Fig. 1 for an example of initial
conditions which violate the assumption in Eq. (3).

III. ALGORITHM

The Goal Assignment and Planning (GAP) algorithm pre-
sented in Algorithm 1 relies heavily upon a number of well-
known methods to generate collision-free trajectories for a
large number of potentially complex dynamic robots.

Algorithm 1 Goal Assignment and Planning (GAP) Overview
1: for i ∈ IN do
2: for j ∈ IM do
3: Compute γij(t), optimal trajectory from si to gj
4: Compute optimal assignment of robots to goals, φ∗

5: for i ∈ IN do
6: for j ∈ IN \ i do
7: if si ∈ P ?(sj , gφ?j) then
8: Assign partial order P: j � i
9: if gi ∈ P ?(sj , gφ?j) then

10: Assign partial order P: i � j
11: Construct suitable total ordering ψ from partial ordering
P

12: Optional refinement of γiφ?i (t). See Sect. V
13: for i = 1→ N do
14: Compute t̂ψi , time offset of robot with priority i
15: return trajectories γiφ?i (t− t̂ψi)

The generation of a graph G, which has the dimensionality
of that of a single robot, is specified in Sect. II and must
be performed before the algorithm begins. The method next
relaxes inter-agent collision conditions to decouple the system
into N multi-goal trajectory planning problems, a process
which is detailed in Sect. III-A. Sect. III-B describes utilizing
the Hungarian algorithm to assign robots to goal states. Next,
Sect. III-C introduces the notion of prioritization of robots,
which is always possible due to the minimum maximum cost
property of the optimal assignment. Finally in Sect. III-D,
trajectories satisfying robot dynamics and avoiding collisions
with the environment and other robots are computed. Proofs
of collision avoidance and the completeness of Algorithm 1
are deferred to Sect. IV.

A. Computing Individual Trajectories

After construction of graph G, the graph is searched for the
minimum cost path for all NM combinations of robots and
goal states. Dijkstra’s algorithm [1] is a natural choice for this
graph search as it returns optimal paths in the graph from the
start vertex of a robot to all other vertices.

After the optimal path through the graph is found, full robot
trajectories can be constructed from the trajectory segments τkl
corresponding to ekl ∈ E to form γij(t) for robot i such that
γij(ti,0) = si and γij(ti,f) = gj . Each robot will remain at
its starting vertex when t < ti,0 and its goal vertex if t > ti,f .

If the graph search finds that goal gj is unreachable from
start location si, the cost is infinite C(γij) =∞.

B. Assignment

The optimal assignment is defined as the one that minimizes
the p-norm of the costs incurred by the team:

φ∗ ≡ argmin
φ

(∑
i∈IN

||P (si, gφi)||p
) 1
p

(5)

where p is sufficiently large such that the following minimum-
maximum cost principle holds:

max
(
||P ?(si, gφ?i)||, ||P ?(sj , gφ?j)||

)
≤ max

(
||P ?(si, gφ?j)||, ||P ?(sj , gφ?i)||

) (6)

This means any pairwise exchange of assignment between
robots i and j will not result in the maximum cost of the
trajectory decreasing. This is a variant of the task assignment
problem and can be solved using the well-known Hungar-
ian algorithm [7] with bounded computational complexity of
O(max(N,M)3).

The cost of a path to g0 is defined as a very large constant,
Λ, as g0 corresponds to a robot not being assigned to a goal:

||P (si, g0)|| = Λ, Λ >
∑
eij∈E

C(τij)

This choice of cost will force as many robots as possible to
navigate to a goal state.

C. Prioritization

The prioritization stage induces an ordering among all of
the robots:

si ∈ P ?(sj , gφ?j) =⇒ i ≺ j ∀i 6= j (7)

gi ∈ P ?(sj , gφ?j) =⇒ i � j ∀i 6= j (8)

These relations induce a partial ordering P . The proof that
this is in fact a partial ordering is left to the reader as it is
similar to that of the partial order in [19].

The next step is to construct a total ordering which respects
all relations of the partial ordering P . In the case of an
ambiguity in the partial ordering, the cost of the trajectories
can be used as a tie breaker when constructing this total
ordering. This total ordering can then be represented by the
mapping ψ : IN → IN where ψi identifies the robot with
priority i.

D. Parameterization

To summarize up to this point: feasible trajectories for
each robot have been computed for every robot-goal pair
(γij) and robots have either been assigned a goal destination
φ?i = j ∈ IM or will remain stationary φ?i = 0, and the robots
have been given a prioritization order (ψi). The trajectories
γiφ?i (t) will navigate the robot from the initial state si to
the final assigned state gφ?i , however at this point, there may
be collisions between robots. We propose a simple scheme
that essentially entails a reparametrization of the planned
trajectories. This section outlines a basic method which relies
on the resting boundary conditions assumption.

Robots are systematically assigned time offsets, t̂ ≥ 0, to
avoid collision with robots of higher priority. The robot with
highest priority (ψ1) begins with an offset of t̂ψ1 = 0. Then,
the robot with the second highest priority (ψ2) computes an
offset such that its trajectory never collides with the robot with
highest priority. It is usually best to minimize the offset times:

t̂ψ2
= arg min

t̂ψ2

B(γψ2,φψ2
(t−t̂ψ2

)))∩B(γψ1,φψ1
(t−t̂ψ1

)) = ∅

Similarly, the robot with the third highest priority then finds
the minimum time offset which results in a collision free
trajectory between it and all other robots with higher priority.
This continues with each robot requiring knowledge of the full
trajectory of all robots with higher priority than itself until all
offset times are computed, t̂i ∀ i ∈ IN .

E. Algorithm Applied to Simple Robotic Example

This section considers a team of interchangeable circular
kinematic robots with diameter D = 1 that can move spatially
in 2 dimensions. The state is represented as a 2-dimensional
position vector, xi ∈ R2. The graph structure chosen is
a regular grid with vertex spacing of D. The trajectories
corresponding to edges of the graph are chosen to be straight
lines between vertices with constant velocity:

τij(t) =

(
vi − vj
||vi − vj ||2

)(
t− t0
tf − t0

)

s1

s2

s3

g3

g2

g1

s4

(a) Initial states (si), goal states
(gi), and obstacles (gray)

s1

s2

s3

s4

g3

g2

g1

(b) Computation of G = (V,E),
trajectories τ shown.

s1

s2

s3

g3

g2

g1

s4

(c) Optimal assignment trajectories
(φ?)

s2

g3

g2

g1

s4

s3

s1

(d) Snapshots of trajectory tracking
at t = 0.5, 1.0, 1.5, 2.0

Fig. 2. Key algorithmic steps for a simple circular robotic team of N = 4
robots navigating to M = 3 goal states.

The robot extent is equivalent to a ball of radius R, or B(xi) =
xi + BR. A 4-connected grid using straight line trajectories
satisfies the requirements in (3), (4) and (2). The edge costs
can be defined as the distance traveled:

C(τij) = ||vi − vj ||2 = D = 1

Now, consider the N = 4 robot system with M = 3 goals
depicted in Fig. 2(a). The graph and corresponding trajectories
are constructed making use of the regular grid as shown in
Fig. 2(b). Then the optimal path through the graph is planned
for each robot to every goal, resulting in 12 trajectories. The
trajectory costs returned for each of the paths through the
graph in Fig. 2(b) are:

[
||P ?(si, gj)||

]
=


7 9 6
9 11 8
4 6 3
2 2 3


The optimal assignment using the Hungarian algorithm is

to assign robot 1 to goal 3, robot 3 to goal 1, and robot 4 to
goal 2, or φ?1 = 3, φ?2 = 0, φ?3 = 1, φ?4 = 2. The trajectories
correlating to these assignments are plotted in Fig. 2(c).

Notice how in Fig. 2(c), the starting location of robot 3 is in
the path of robot 1, or s3 ∈ P (s1, gφ?1). Therefore, according
to in (7), robot 3 has priority over robot 1, or a partial order is
induced of 1 � 3. A valid total ordering might be {3, 2, 1, 4}.
In this case, ψ1 = 3, ψ2 = 2, ψ3 = 1, and ψ4 = 4. Now, robot
ψ1, or robot 3 assigns its time offset of t̂3 = 0. Then robot
ψ2 = 2 assignes its time offset, which can also be 0. Next,
robot ψ3 = 1 assigns its offset time, which can be t̂1 = 0 as
well since the trajectory will not lead to a collision even with
zero offset. Finally robot ψ4 = 4 plans t̂4 = 0.

IV. ALGORITHM PROPERTIES

Sect. IV-A proves collision avoidance for all robots and
Sect. IV-B demonstrates completeness. Finally, Sect. IV-C
shows polynomial growth of the complexity bound of the
algorithm in the number of boundary conditions.

A. Collision Avoidance

The minor restrictions on allowable vertices in V and on
trajectories τ will now be useful in demonstrating collision
avoidance in Theorem 1.

Theorem 1. Algorithm 1 returns trajectories for every robot
in the system γi,φ?i (t− t̂i), which will task as many robots to
goal states as possible without collisions.

Proof: The conditions in (2) require that in order for a
robot to collide with another robot which is stationary at its
start or assigned goal state, the moving robot must pass directly
through the start or goal vertex of the stationary robot.

However, a robot passing directly through the start or goal
vertex of another robot induces the ordering dictated by (7) or
(8). These conditions have been proven in Sect. III-C to gen-
erate a partial ordering. Therefore the total ordering ψ which
respects all partial orders also ensures conditions on which
robots transverse the starting and goal states of other robots.
For instance, si ∈ P ?(sj , gφ?j) results in gi /∈ P ?(sj , gφ?j).
Since t̂ is computed in the order of priority, robots will always
depart the starting location before any other robot needs to
enter it. Similarly, robots will never arrive at a goal location
before any robots using that vertex have already left it. By
induction, each robot will always be able to find a time t̂ such
that it does not intersect any robots of higher priority.

B. Completeness

The assumptions in (3) and (4) specify that a robot at either
a start or goal state cannot increase the number of connected
components of the configuration space of any other robot. The
only vertices in the graph which yield a collision with initial
and goal states are the initial and goal states themselves. Any
robot which needs to pass through a boundary state of another
will only do so if the robot with that start state is already
moving as demonstrated in Theorem 1. Therefore the algo-
rithm presented in this paper will preserve the completeness
guarantees of Dijkstra’s algorithm.

C. Complexity Analysis

This section will analyze the computational complexity of
the presented algorithm in terms of number of the robots, N ,
and number of goals being used, M . Planning individual
robot trajectories in Sect. III-A assumes that G is already
constructed. To search for the optimal solution using Dijk-
stra’s algorithm using a min priority queue for each start
location to all vertices has complexity bound of O(|E| +
|V |log|V |). For typical sampling, |V |, |E| � max(N,M)
and therefore constant in N , M . Therefore, finding paths
from all starting locations to all goal locations has bounded

s1

s2

gφ�1

gφ�2

(a)

s1

gφ�1

s2

1 ≺ 2

(b)

s2 gφ�2

gφ�11 ≺ 2

(c)

Fig. 3. Optional refinement of trajectories. Figure 3(a) shows optimal initial
trajectories and Fig. 3(b) shows trajectory refinement of a higher priority
robot. The robot must avoid collisions with the starting states of all robots
with lower priority. Figure 3(c) shows trajectory refinement of a lower priority
robot. This robot must avoid goal states of higher priority robots.

complexity of O(N(|E| + |V |log|V |)). The Hungarian al-
gorithm can be used to solve the assignment problem in
Sect. III-B which has a well-known polynomial complexity
bound of O(max(N,M)3). The prioritization scheme de-
signed in Sect. III-C grows with a complexity bound of
O(N2). Computing time offsets in Sect. III-D grows with
complexity bound O(N2). Therefore, the worst case complex-
ity of this algorithm is O(max(N,M)3+N(|E|+|V |log|V |)).

V. OPTIONAL TRAJECTORY REFINEMENT

While the algorithm presented in Sect. III is very general
for dynamic systems, systems with complex dynamics may
require trajectory planning in the complete state space which
may be very difficult, time consuming, or memory intensive to
perform. Therefore, this section presents an optional method
to refine trajectories, allowing a lower resolution graph to be
constructed or even the use of a lower dimensional robot state.

An assigned trajectory γiφ?i can be optionally refined to γ̃iφ?i
immediately preceding calculation of time parameterization in
Sect. III-D.

There are four requirements for a valid trajectory refine-
ment. First, the refined trajectories must be dynamically feasi-
ble and not cause a collision with any obstacle. Next, refined
trajectories must satisfy the boundary conditions si and gi.
Third, refined trajectories must respect the constraints specified
by the computed total ordering ψ:

i ≺ j =⇒ B(γ̃iφ?i) ∩B(gj) = ∅
i � j =⇒ B(γ̃iφ?i) ∩B(sj) = ∅

Finally, the refinement must decrease the cost of the trajectory
for an individual robot:

C(γ̃iφ?i) < C(γiφ?i) =
∑

eij∈P?(si,gφ?
i
)

C(τij)

If these conditions are met, the results from Theorem 1
continue to apply and collision avoidance is guaranteed. The
basic steps of trajectory refinement are shown in Fig. 3.

VI. APPLICATION TO QUADROTOR MICRO AERIAL
VEHICLE AND EXPERIMENTAL RESULTS

The algorithm presented in this paper was implemented on a
team of homogeneous quadrotors to navigate a complex maze-
like environment. Figure 4 shows the test vehicle with a mass
of 75 g used in these experiments. To guide the experiment
design, consider a scenario where a team of quadrotors enters
a structure, explores a series of chambers connected by narrow
passageways, and departs the structure. The structure used for
experimentation, shown in Fig. 5, has been designed to be
reconfigurable with small passageways. For this experiment,
the passageways are configured such that there exist very long
internal paths within the structure.

Due to their dynamics, quadrotors require planning in a 12-
dimensional state space to fully model the robots’ capabilities.
Fortunately, the quadrotor has been shown to be differentially
flat with flat outputs of position and yaw: x ∈ R3×SO(2). For
the purpose of these experiments, orientation of the quadrotor
is not relevant due to symmetry, so the state of the robots is the
position vector xi ∈ R3. Minimum snap trajectories have been
shown to be very well suited to quadrotors [13, 15] and these
trajectories can be generated through a number of waypoints
quickly and reliably.

In a closed environment as in these experiments, aerody-
namic effects such as ground and inter-vehicle effects are
substantial for the quadrotors, particularly between multiple
robots in a confined space. Therefore, B(x) is represented by
an ellipsoid with elongated vertical dimension to minimize
downwash effects on other robots (as proposed in [14]).

The graph, G, is systematically generated by selecting a
large number of vertices vi ∈ R3 in and out of the structure
which have zero velocity, acceleration, and jerk and respect
the conditions (1), (2). The trajectory τij is generated by
minimizing snap to navigate from one vertex to the next
where the cost function used is the integral of snap over the
trajectory:

C(τij) =

∫ tf

to

....
xi(t)

2 dt

Edge eij is added if ||vi − vj ||
2

is below a threshold distance
and trajectory τij is obstacle collision-free.

Then, optimal individual trajectories are computed by using
Dijkstra’s algorithm. Optimal assignment φ? and the total
ordering ψ are then computed based on the optimal paths,
boundary conditions, and path costs. Finally, time offsets are
computed in order of priority ψ to ensure collision avoidance
of trajectories. Additional time is added to each time offset
robots to minimize the effects of lingering aerodynamic tur-
bulence and downwash.

As the quadrotor has homogeneous boundary conditions at
every vertex, the original trajectories tend to take a substantial
amount of time. Therefore, trajectory refinement is used to
complement the complex dynamics of the quadrotor. The
zero velocity, acceleration, and jerk boundary conditions are
relaxed where possible to allow the quadrotor to make faster
progress and expend less energy. In many instances, this results

Fig. 4. KMel Robotics NanoQuad quadrotor used in experimentation.

Fig. 5. The structure used for experimentation with 12 chambers.

in longer distance traveled for each robot, but less energy
expended and shorter mission completion times.

One experimental trial begins with 6 quadrotors hovering
outside of the structure. Next, 6 goal states are specified, one
goal state per chamber on the lower level of the structure.
The trajectory for every robot is then computed using GAP
(Algorithm 1). Figure 7 shows the trajectories computed, as
well as the actual position of the robots in an experiment at
one instant. Next, 6 additional goal states are given with one
in each chamber of the upper level and those trajectories are
computed and then tracked. Finally, 6 goal states are specified
on the outside of the structure. See Fig. 6 for an image of the
6 robots arriving at specified waypoints.

Video results of single and multiple robot experiments are
available online1. This video also includes a simulation of
25 robots navigating a cluttered 3D environment, which was
computed in 0.5 seconds.

Fig. 6. Six robots flying in the structure used for experimentation.

Fig. 7. Visualization of actual experiment with refined minimum snap
trajectories being tracked for 6 robots in confined structure. Video available
online1.

Figure 8 shows the spherical error probable (SEP) for
a single robot tracking the original trajectory, the SEP for
a single robot tracking a refined trajectory, and the SEP
for 6 robots tracking refined trajectories. These plots clearly
demonstrate the quadrotor’s improved accuracy tracking these
refined trajectories.

Robot states are tracked using a Vicon motion capture
system. All experiments are computed on an external computer
which is running control code to maintain the quadrotors in
flight, as well as computing the trajectories as a separate
process. Code is mostly written in MATLAB. Construction of
the graph with over 1000 vertices generally takes less than
100 ms. Path planning for N = 6 robots reliably takes less
than 1 ms. Assignment takes less than 10 ms. Prioritization
generally takes 5 ms for 6 robots. Trajectory refinement
using minimum snap trajectory generation requires between
5 − 10 ms per robot, depending on the length of trajectory.
Computing time offsets requires a large number of collision
checks of ellipsoids, and therefore takes between 10− 100 ms
for 6 robots depending on the length of trajectories. Thus, the

1 http://youtu.be/DRJPgOyN2so

http://youtu.be/DRJPgOyN2so

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15
Er

ro
r (

m
)

Fraction of Measurements Below Error

Fig. 8. Spherical Error Probable (SEP) for trials with 1 robot following
an unrefined trajectory (blue, dash dot), 1 robot following a refined trajectory
(black solid), and 6 robots tracking refined trajectories as a team (red dashed).
Notice that the refined trajectories give substantially lower error. Additionally,
the initial trajectory takes 6 times longer than a refined trajectory to complete
as it does not respect the quadrotor dynamics.

10 2

10 1

100

101

2 4 6 10 16 22 32 44 60 82
Number of Robots

Ti
m

e
to

 C
om

pu
te

 (s
)

Dijkstra Search
Hungarian Algorithm
Refinement
Collision Avoidance
Goal Assignment and Planning
Linear (N)
 Quadratic (N2)
 Cubic (N3)

Fig. 9. 100 simulation trials for each value of N to demonstrate time duration
spent computing each stage of the algorithm applied to quadrotors. Note that
both the planning (red) and refinement (green) grow roughly linearly in the
number of robots and collision avoidance (pink) grows roughly quadratically.
As the number of robots grows larger, the N3 complexity of the Hungarian
algorithm begins to dominate.

total computation time is typically just under 0.2 s to generate
dynamically feasible trajectories for 6 quadrotors through a
tight space in MATLAB, however this could be optimized
substantially to get better performance.

A much larger environment, similar to the maze-like struc-
ture in 5, was modeled in simulation to test the computational
requirements as the number of robots grows much larger than
the current experimental space allows. This simulated graph
has |V | > 104, |E| > 6 × 105, which for N < 100 are
roughly constant in the number of simulated robots. The times
of computation for each stage of the algorithm are displayed
in Fig. 9.

This plot confirms the complexity analysis as a function of
the number of robots in IV-C, where as the number of robots
increases, solving the task assignment grows roughly cubically
and begins to dominate the computation time at about 16

robots for the given parameters of the simulation. Of course, as
|V | or |E| increase, the Dijkstra search will contribute more,
moving the crossover of graph search and task assignment to
higher N .

VII. CONCLUSIONS AND FUTURE WORK

This paper presents a resolution-complete tractable trajec-
tory generation method for a team of robots with arbitrar-
ily complex dynamics. The algorithm is shown to provide
collision-free trajectories for large numbers of robots. The
concept of trajectory refinement allows us to incorporate the
dynamics of the robot without substantially increasing the
algorithm’s complexity. This algorithm is then applied to a
team of quadrotor aerial vehicles.

In current work, we are pursuing distributed solutions as
well as relexing the assumption of completely interchangeable
robots. It also appears this algorithm could be very useful in
solving the dynamic vehicle routing problem[17], but would
require additional consideration to handle time evolving goal
states. Finally, the flexibility of the cost function may be useful
in creating algorithms for designing controllers which could
be used for exploration with teams of robots.

ACKNOWLEDGMENTS

Research supported by: ONR Grant N00014-07-1-0829,
ONR MURI Grant N00014-08-1-0696, NSF CCF-1138847,
ARL Grant W911NF-08-2-0004, ONR Grant N00014-09-1-
1051, Matthew Turpin was supported by NSF Fellowship
Grant DGE-0822.

REFERENCES

[1] E.W. Dijkstra. A note on two problems in connexion with
graphs. Numerische mathematik, 1(1):269–271, 1959.

[2] M. Erdmann and T. Lozano-Perez. On multiple moving
objects. In Robotics and Automation. Proceedings. 1986
IEEE International Conference on, volume 3, pages
1419–1424. IEEE, 1986.

[3] B.P. Gerkey and M.J. Matarić. A formal analysis and
taxonomy of task allocation in multi-robot systems. The
International Journal of Robotics Research, 23(9):939–
954, 2004.

[4] D. Hsu, L. Kavraki, J.C. Latombe, R. Motwani,
S. Sorkin, et al. On finding narrow passages with
probabilistic roadmap planners. In Proc. Int. Workshop
on Algorithmic Foundations of Robotics (WAFR), volume
1998, 1998.

[5] K. Kant and S.W. Zucker. Toward efficient trajectory
planning: The path-velocity decomposition. The Interna-
tional Journal of Robotics Research, 5(3):72–89, 1986.

[6] S. Kloder and S. Hutchinson. Path planning for
permutation-invariant multirobot formations. Robotics,
IEEE Transactions on, 22(4):650–665, 2006.

[7] H.W. Kuhn. The hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 2(1-2):
83–97, 1955.

[8] S.M. LaValle and S.A. Hutchinson. Optimal motion
planning for multiple robots having independent goals.
Robotics and Automation, IEEE Transactions on, 14(6):
912–925, 1998.

[9] L. Liu and D. Shell. A distributable and computation-
flexible assignment algorithm: From local task swapping
to global optimality. In Proc. of Robot.: Sci. and Syst.,
Sydney, Australia, July 2012.

[10] L. Liu and D.A. Shell. Multi-level partitioning and
distribution of the assignment problem for large-scale
multi-robot task allocation. In In Proc. of Robotics:
Science and Systems, Los Angeles, CA, June 2011.

[11] Savvas G Loizou and Kostas J Kyriakopoulos. Nav-
igation of multiple kinematically constrained robots.
Robotics, IEEE Transactions on, 24(1):221–231, 2008.

[12] Ryan Luna and Kostas E Bekris. Push and swap: Fast
cooperative path-finding with completeness guarantees.
In Proceedings of the Twenty-Second international joint
conference on Artificial Intelligence-Volume Volume One,
pages 294–300. AAAI Press, 2011.

[13] D. Mellinger and V. Kumar. Minimum snap trajectory
generation and control for quadrotors. In Proc. of the
IEEE Intl. Conf. on Robot. and Autom., Shanghai, China,
May 2011.

[14] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar.
The GRASP multiple micro UAV testbed. IEEE Robot.
Autom. Mag., 17(3):56–65, September 2010.

[15] M. J. Van Nieuwstadt and R. M. Murray. Real-time
trajectory generation for differentially flat systems. Intl.
J. Robust and Nonlinear Control, 8(11):995–1020, De-
cember 1998.

[16] Mike Peasgood, Christopher Michael Clark, and John
McPhee. A complete and scalable strategy for coordi-

nating multiple robots within roadmaps. Robotics, IEEE
Transactions on, 24(2):283–292, 2008.

[17] Harilaos N Psaraftis. Dynamic vehicle routing problems.
Vehicle routing: Methods and studies, 16:223–248, 1988.

[18] M. Turpin, N. Michael, and V. Kumar. Trajectory plan-
ning and assignment in multirobot systems. In Workshop
on the Algorithmic Foundations of Robotics, Boston, MA,
June 2012.

[19] M. Turpin, N. Michael, and V. Kumar. Computationally
efficient trajectory planning and task assignment for large
teams of unlabeled robots. In Proc. of the IEEE Int. Conf.
on Robotics and Automation, May 2013.

[20] J. Van Den Berg, S. Guy, M. Lin, and D. Manocha. Re-
ciprocal n-body collision avoidance. Robotics Research,
pages 3–19, 2011.

[21] J.P. van den Berg and M.H. Overmars. Prioritized motion
planning for multiple robots. In Intelligent Robots and
Systems, 2005.(IROS 2005). 2005 IEEE/RSJ Interna-
tional Conference on, pages 430–435. IEEE, 2005.

[22] G. Wagner, M. Kang, and H. Choset. Probabilistic
path planning for multiple robots with subdimensional
expansion. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, pages 2886–2892.
IEEE, 2012.

[23] Glenn Wagner and Howie Choset. M*: A complete
multirobot path planning algorithm with performance
bounds. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pages 3260–3267, San Francisco,
CA, Sept. 2011.

[24] Jingjin Yu and M LaValle. Distance optimal formation
control on graphs with a tight convergence time guaran-
tee. In Decision and Control (CDC), 2012 IEEE 51st
Annual Conference on, pages 4023–4028. IEEE, 2012.

	Introduction
	Preliminaries
	Algorithm
	Computing Individual Trajectories
	Assignment
	Prioritization
	 Parameterization
	Algorithm Applied to Simple Robotic Example

	Algorithm Properties
	Collision Avoidance
	Completeness
	Complexity Analysis

	Optional Trajectory Refinement
	Application to Quadrotor Micro Aerial Vehicle and Experimental Results
	Conclusions and Future Work

