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Abstract—We present a new Bayesian policy search algorithm to balance exploration and exploitation with the intention
suitable for problems with policy-dependent cost variance, a of minimizing the total number of policy evaluations. These
property present in many robot control tasks. We extend rece  55nerties make BO attractive for robotics since cost fionst

work on variational heteroscedastic Gaussian processes to the ften h ttiple | | mini d poli luati
optimization case to achieve efficient minimization of very noisy €N Nave mulliple local minima and policy evajuations are

cost signals. In contrast to most policy search algorithms, our typically expensive. It is also straightforward to incorgte
method explicitly models the cost variance in regions of low approximate prior knowledge about the distribution of cost
expected cost and permits runtime adjustment of risk sensitivity (such as could be obtained from simulation) and enforce hard
without relearning. Our experiments with artificial systems and 4 straints on the policy parameters.
a rgal mobile manlpulator demonstratg that flexible risk-sensitive Previous implementations of BO have assumed the variance
policies can be learned in very few trials. X - =
of the cost signal is the same for all policies in the search
|. INTRODUCTION space, which is not true in general. In this work, we propose
Experiments on physical robot systems are typically assa-new type of Bayesian optimization algorithm that relaxes
ciated with significant practical costs, such as experigrenthis assumption and efficiently captures both expectedarabt
time, money, and robot wear and tear. However, such esest variance in regions of low cost. Specifically, we extend
periments are often necessary due to the extreme difficuigcent work developing a variational Gaussian process mode
associated with constructing simulated systems of suffilsie for problems with input-dependent noise (mteroscedastic-
high fidelity that behaviors translate to hardware withouty) [15] to the optimization case by deriving an expression
performance loss. For many nonlinear systems, it can evien expected improvement_[22], a commonly used criterion
be infeasible to perform simulations or construct a reaslenafor selecting the next policy, and incorporating log prioro
model. the optimization to improve numerical performance. We also
For this reason, model-free policy search methods haskow that by employing confidence bound policy selection
become one of the standard tools for constructing contsollecriteria, cost variance structure can be explo#duntimeto
for robot systems [27, 23, 12,/29,/17,/ 11]. These algorithnpsoduce risk-sensitive control. We evaluate the algoriihm
are designed to minimize the expected value of a noisy c@stperiments with synthetic systems and a dynamic stabiliza
signal, j(e), by adjusting policy parameterg, for a fixed tion task using a real mobile manipulator.
class of policies. By considering only the expected cost of
a policy and ignoring cost variance, the solutions found bX ) o
these algorithms are by definitioisk-neutral where the term A Bayesian Optimization
risk is equivalent tocost variance However, for systems that Bayesian optimization algorithms are a family of global
operate in a variety of contexts, it can be advantageousv® haptimization techniques that are well suited to problemsngh
a more flexible attitude toward risk. For example, a humanoiisy samples of a cost functioni(@), are expensive to
otherwise capable of a fast and energy efficient gait migbbtain [17, 6/ 3| 28, 13]. In the control context, BO methods
adopt a more predictable, possibly less energy efficiertt gase data from previous policy evaluations to compute a nonpa
when operating near a large crater. Indeed, studies in hunmameteric distribution of cost in policy parameter spacee®
motor control and animal behavior suggest that variable righis distribution, a decision-theoreselection criterioris used
sensitivity may be pervasive in natute [2, 1]. to select policy parameter valueg, that, e.g., have a high
Recently there has been increased interest in applyipgbability of having low cost or have high cost uncertainty
Bayesian optimization (BO) algorithms to solve model-free Most BO implementations represent the prior over cost
policy search problems [17,/19,120, 33| 28, 13]. In contrast functions as @&aussian procesgsP). To fully specify the GP
well-studied policy gradient methods [23], BO algorithnesp prior, J(6) ~ GP(m(0),ks(0,6’)), one must define a mean
form policy search by building a distribution of cost in myli function and a covariance (kernel) function(6) = E[J(8)]
parameter space and applying a selection criteriogidbally andk;(0,0’) = E[(J(8) —m(0"))(J(0)—m(6"))]. Typically,
select the next policy. Selection criteria are typicallpideed we setm(0) = 0 and letk;(6,6’) take on one of several

Il. BACKGROUND



standard forms. A common choice is the anisotropic squarestimate of improvement and tends to encourage exploration

exponential kernel, of regions of high uncertainty. Cost scale invariance can be
1 achieved by multiplyingé by the signal standard deviation,
ky(6,0") = oF exp(—§(0 -0\ M6 -0, 1) o (€]

where o7 is the signal variance and/ = diag(ﬂf) is a B. Variational Heteroscedastic Gaussian Process Regrassi
diagonal matrix of length scale hyperparameters. Inteligiv

. . . One limitation of the standard regression model is the as-
the signal variance captures the overall magnitude of tisé €Q,motion of i.i.d. noise over the inout space (see equaBhn (
function variation and the length scales capture the Jeitgit P o but sp q :

of the cost with respect to changes in each policy pararriéter'.vlany data do not adhere to this simplification and models

prior information regarding the shape of the cost distrdout Pr?lzar?:eeie?foscsepélg:t}g ?ee;ergiﬁ)endﬁgglet?/t;z;hg:f% r:::]m
is available, e.g., from simulation experiments, the mesc{

tion and kernel hyperparameters can be set accordingly [17] J(8) = J(6) +2(8), =(68) ~N(0,r(6)), (6)
However, in many cases such information is not available, so

these quantities are optimized using maximum likelihood evhere the noise variance;(0), is dependent on the in-

maximum a posteriori techniques_[24]. put. In the Bayesian setting, a second GP prigf@) ~
Samples of the latent cost function are assumed to ha¥® (o0, k4(0,0’)), is placed over the unknown log variance
additive i.i.d. noise: function, g(0) = logr(0) [, 110, (15]. This heteroscedastic

Gaussian process (HGP) model has the unfortunate property

7 _ 2
J(0) = J(0) +e, e~ N(0,07). ) that the computations of the posterior distribution and the
Given a GP prior and datX. = [6;,6,,...,0x]T € RV*I6I, marginal likelihood are intractable, thus making hypeapar
y = [J(61),J(62),...,.7(0x)]T € RV, one can compute the eter optimiz_ati_on and prediction d_ifficult. _
posterior (predictive) cost distribution for a polid,: J, = In the variational heteroscedastic Gaussian process (WHGP
J(8,) ~ N(E[J.], s2), model [15], a variational lower bound on the marginal
. likelihood of the HGP model serves as a tractable surro-
E[J.] = ki(Kf+o2D)7 'y (3) gate function for optimizing the hyperparameters. ket=
o ki(6.,0,) — k}*(Kf +U§I)*1kf*, (4) [9(01),9(62),...,9(8N)]T be the vector of latent log noise

variances for theV data points. By defining a normal vari-

whereky. = [k;(01,0.),ks(602,0.),...,k;(0n,0.)]" and ational probability densityg(g) ~ N (u, ), the following
K is the positive-definite kernel matrif<i; = k(0:,6;). marginal variational bound can be derived|[15]:
When the hyperparameters are unknown, the log marginal
likelihood, log p(y|X, o, £f), is commonly used to perform F(p,X) = logN(y|0,K;+R)— ;tr(%)
an optimization before computing the posterior|[24]. It is — KL(N(g|p, 2) ||V (8|01, K,)), 7)
straightforward to computéog p(y|X, oy, £;) and its gra-
dients, so we are free to choose from existing nonlinesthere R is a diagonal matrix with element§R];; =
optimization methods to perform the optimization. eltli=[¥lii/2 Intuitively, by maximizing equation[{7) with

To select thd N +1)** policy parameters, we optimize a sefespect to the variational parameteg, 32), we maximize the
lection criterion computed on the posterior. A common choidog marginal likelihood under the variational approxinoati
is expected improveme(iEl) [22, 3], which is defined as the while minimizing the distance (in the Kullback-Leibler se)
expected value of the improvemetit, over the expected costbetween the variational distribution and the distributiom
of the best policy previously evaluated. Since the predtictiplied by the GP prior. By exploiting properties 6f(u, 3) at
distribution under the GP model is Gaussian, the improvémdis maximum, one can writg andX in terms of N variational
for policy, 0., is also Gaussian, ~ N (upest — E[j*],SQ), parameters_[15]:

*

where pipest = min;—1, y E[J(8;)]. Thus, 1
p=K, A - 51)1 +pl, M=K '+A,

(oo}
EI(0,) = / Lop(1,)dI, ) - o ) _ )
0 where A is a positive semidefinite diagonal matrix of vari-
= Se(ua®(us) + ¢(un)), (5) ational parametersF(u,¥) can be simultaneously maxi-
whereu, — (ubeer[j*D/s*, and®(-) andg(-) are the CDF mized with respect to the variational parameters and the HGP

and PDF of the normal distribution, respectivelysif) = 0, model hyperparameters;; and ¥,. If the kernel functions

/ !/ H
the expected improvement is defined to(beBoth (8) and its k;(6,6) and k,(6,8') are squared exponentiali] (1), then
. . . \Iff:{O'f,Ef} and\I/g:{uo,ag,Eg}.
gradient,0EI(0)/00, are efficiently computable, so we can The VHGP model vield P . iational oredi
apply standard nonlinear optimization methods to maxirfilze tive d?ansity modet ylelds a non-taussian vanational predic-

to select the next policy. In practice, a paramétir often used
to adjust the balance of exploration and exploitation, = R . 9 9
(st — E[J] + &) /5., where¢é > 0 leads to an optimistic q(J.) = /N(J*|a*’c* + TN (gs| i, 03 dg, (8)



where which can be efficiently approximated using Gauss-Hermite
quadrature. Similarly, the gradietI(6)/00 can be com-

T -1
a. = kp(Kf+R)"y puted under the integral {112) and the result is of the desired
2 = kg(6.,0.) —k;,(K;+R) 'ky, form:
1 2
pe = KA D1+ o ZO) - [ swdw, (14)
2 T —1\—1
0 = ky(6.,0.) — k. (K, + A kg, where
Although this predictive density is still intractable, itsean 1 1
and variance can be calculated in closed farm [15]: 2(w) = oo [J*U* (s ®(us) + P(u))
E[j*] = a, (9) « (_30* +2w230'* i \/iwau*>
V[J.] = 2 +exp(us +02/2) = s> (20) 06 06 00
Oy & O ®
[1l. VARIATIONAL BAYESIAN OPTIMIZATION + 37(“* (ue) + (us)) BT ()]

There are two practical motivations for capturing policy- As in the standard BO setting, we can easily incorporate an
dependent variance structure during optimization. Firgtt- exploration paramete¢, by settingu, = (Ibest — @x + &) /Vs.
rics computed on the predictive distribution, such as El aml can be maximized using standard nonlinear optimization
probability of improvement, will return values that havealre algorithms. Since flat regions and multiple local maxima
meaning for the system under consideration. Second, it&seamay be present, it is common practice to perform random
the opportunity to employ policy selection criteria thakea restarts during El optimization to avoid low-quality saduts.
cost variance into account, i.e., that are risk-sensitive. In our experiments, we use the NLOPT [8] implementation

We extend the VHGP model to the optimization case kyf sequential quadratic programming (SQP) with 25 random
deriving the expression for expected improvement and i§starts to optimize El.

gradient and show that both can be efficiently approximated
to several decimal places using Gauss-Hermite quadraasre B. Confidence Bound Selection
is also the case for the predictive distribution itself D15] In order to exp|0it cost variance information for po||Cy
We show how efficiently computable confidence bound sgelection, we must consider selection criteria that flgxiake
lection criteria can be used to select risk-sensitive pic cost variance into account. Although El performs well dgrin
and generalize the expected improvement criterion. Toesdrjearning by balancing exploration and exploitation, itl<al
numerical issues that arise wheénis small (i.e. in the early short in this regard since it always favors higher variance
stages of optimization), we incorporate independent logrpr among solutions with equivalent expected cost. In contrast
into the marginal variational bound and identify heuristigonfidence boun¢CB) selection criteria allow one to directly
sampling strategies that perform well empirically. specify the sensitivity to cost variance.

The family of confidence bound selection criteria have the
A. Expected Improvement general form

The improvement],, of a policy, 8., under the variational . .
predictive distribution[(8) is CB(6., ) = E[J.] + b(V[J.], 5), (15)

) ) whereb(-, -) is a function of the cost variance and a constant
q(l.) = /N(I*Wbest = @, VN (gel s, 03)dg., (11)  that controls the system’s sensitivity to risk. Such ciddrave
] been extensively studied in the context of statistical glob
wherev? = ¢ + e9-. The expression for EI then becomes  gptimization [5,/ 25] and economic decision makirg|[16].
oo Favorable regret bounds for sampling with CB criteria of the
EI(6.) = / Lq(1.)dlI, form b(V[J.], k) = k\/V[J.] = ks, have also been derived
0 for certain types of Bayesian optimization problems [26].
= /v* [ @ (1) + D) N (g | s, 02)dgs, (12) Interestingly, CB criteria have a strong connection to the
exponential utility functions of risk-sensitive optimabrarol
where u. = (ubest — ax)/v«. Unfortunately, this expression (RSOC) [32, 31]. Consider the standard RSOC objective

is not analytically tractable. However, if we let = (g. — function
)/ V20, and replace all o_ccurrenc_esg;finthe expressions (k) = —2 ' logE i, (16)
for v, andu,, we can rewrite equatiofi_(l.2) as (k) = =2k log Efe J-
—w? Uk Taking the second order Taylor expansioneoﬁ"”"j* about
EI6.) = e Tona [P (us) + d(us)] dw E[J.] yields

/ " h(w)duw, (13) 1(8) ~ L] — RV 17)



This approximation exposes the role of the parameten Algorithm 1 Variational Bayesian Optimization

determining the risk sensitivity of the system:< 0 is risk- 1) Input: Previous evaluationsX, y, lterations N
averse « > 0 is risk-seekingand x = 0 is risk-neutral [31]. a) fori:=1:N

Thus, policies selected according to a CB criterion with i) Maximize equation({18) giveK,y

b(V[J.], k) = —1kV[J,] can be viewed as approximate RSOC Ut UF, At = argmax F(p, 3)

solutions. Furthermore, since the selection is performéd w i) ngimsi?ze selection criteriors, (e.g. El or CB)
resect to the predictive distributionl (8), policies wittifeiient computed w.rt. equatiofi](8)

risk characteristics can be selectaatthe-fly without having 6, := arg maxg S(6, \I/;r U+, At

to perform separate optimizations that require additipodty iii) Execute;, observe costj(gei)

executions ?n the slystem];. o |' v) AppendX := [X: 6], y = ly:J(6:)]
We can also apply confidence bound criteria to generalize b) WE, Ut A = arg max F (1, %)

El to anexpected risk improveme(&RI) criterion. We define

risk improvement for a policy, asRI. = ppest + KSbest — ¢) Retum X,y, \II}F \I]!JJF’ AT
Jo — K8y ~ N (tipest — E[j*} + K(Spest — Sx),52), Where

Ubest and spesr are found by minimizingu + <s over all

previously evaluated policies. Thus, ERI can be viewed as V. EXPERIMENTS
a generalization of El wheré = k(spest — $«) + & and A. Synthetic Data

ERI = EI whenk = 0.

As an illustrative example, in Figudgl 1 we compare the
performance of the VBO to standard BO in a simple 1-
C. Coping with Small Sample Sizes dimensional noisy optimization task. For this task, thestru
) ) o o underlying cost distribution (Figufe I{a)) has two globahm
1) Log Hyperpriors: To avoid numerical instability in the jn \with different cost variances. Both algorithms begirthwi
hyperparameter optimization whel is small, we augment e samen, = 10 random samples and perform 10 iterations
F(p,X) with indppendent log-normal priors_[18] for eachy g selection € = 1.0, ¢ = 0.25). In Figure[I{H), we see
hyperparameter in the VHGP model, that BO succeeds in identifying the regions of low cost, but i
) cannot capture the policy-dependent variance charatitsris
F(p,2) = F(u,2) + > logN(log¢x|ux,0}), (18)  Incontrast, VBO reliably identifies the mininzad approxi-
Yrev mates the local variance characteristics. Fijure] 1(d) shbe
result of applying two different confidence bound selection

where W = W; U W, is the set of all hyperparameters. Inriteria to vary risk sensitivity. Here we maximize
practice, these priors can be quite vague and thus do not .

require significant experimenter insight. For example, im o CB(6.,x) = —E[J.] — rs. (19)
experiments we set the log prior on length scales so that the _ e . . u

width of the 95% confidence region is at least 20 times the>ndx = 1.5 o select a risk-seeking policy and= 1.5 to

) Select a risk-averse policy.
actual policy parameter range.
As is the case with standard marginal likelihood maximiza3. Noisy Pendulum

tion, F(p, %) may have several local optima. In practice, \ye next considered a swing-up task for a noisy pendulum
performing random restarts helps avoid low-quality solusi system. In this system, the maximum torque output of the

(especially whenV is small). In our experiments, we performyqnqjum actuator is drawn from a normal distribution at
10 random restarts using SQP for policy selection. the beginning of each episode. As a rough physical analogy,
2) Sampling: It is well known [9] that selecting policies this might be understood as fluctuations in motor perforraanc

based on distributions fit using very little data can lead #@at are caused by unmeasured changes in temperature. The
myopic sampling and premature convergence. Incorporatipglicy space consisted of “bang-bang” policies in which
external randomization is one way to help alleviate thisoprothe maximum torque is applied in the positive or negative
lem. For example, one commonly obtains a random sampledifection, with switching times specified by two parameters
Ny initial policies prior to performing optimization. We havey < ¢, ¢, < 1.5 sec. Thus@ = [t1,t2]. The cost function was
found that sampling according to El with probability-e¢ and defined as
randomly otherwise performs well empirically. In the stard T
BO setting with model selectiori-random El selection has J(0) :/ 0.01a(t) + 0.0001u(t)?dt, (20)
been shown to yield near-optimal global convergence rdfes [ t=0
Randomized CB selection with, e.gi, ~ N(0,1) can also where0 < a(t) < « is the pendulum angle measured from
be applied when the policy search is aimed at identifying @right vertical, 7 = 3.5 sec, andu(t) = Tay if 0 <t < tq,
spectrum of policies with different risk sensitivities. w(t) = —Tmax f t1 < t < t1 + to, and u(t) = Tay if
The Variational Bayesian Optimization (VBO) algorithm is; + t2 <t <T. The system always started in the downward
outlined in Box[1. vertical position with zero initial velocity and the episod
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Figure[34 illustrates two policies selected by maximizing CB

Fig. 1. [(@) A noisy cost function sampled during 10 iteratidéy = A iotribi it it
10) ofyesian optimization arfd |c) the VBO algorithm. BO ceeded criteria m) on the learned distribution with = +£2.0. The

in identifying the minima, but it cannot distinguish betweeigthand low fisk-seeking policy = [1.03,1.5]) makes a large initial
variance solution§. (H) Confidence bound selection caitare used to select swing, attempting to reach the vertical position in two sygn

risk-seeking and risk-averse policy parameter values. The risk-averse policy = [0.63,1.14]) always produces

three swings and exhibits low cost variance, though it has
higher cost than the risk-seeking policy when the maximum
torque is large.

It is often easy to understand the utility of risk-averse
and risk-neutral policies, but the motivation for selegtin
risk-seeking policies may be less clear. The above result
suggests one possibility: the acquisition of specializedh-
performance policies. For example, risk-seeking policadd
be chosen in an attempt to identify observable initial con-
ditions that lead to rare low-cost events. Subsequent opti-
mizations might then be performed to direct the system to
these initial conditions. Another example is if the context
Fig. 2. The cost distribution for the simulated noisy pendulsystem demands performance that lower risk policies are very etk
obtained by a 20x20 discretization of the policy space. Epolicy was to generate, such as if the minimum time to goal was reduced
evaluated 100 times to estimate its mean and variahte=(40000). so that only two swing policies had a reasonable chance of

succeeding.
terminated if the pendulum came withinl radians of the .
upright vertical position. The parameters of the systemewef- Balance Recovery with the uBot-5
I = 1.0 m, m = 1.0 kg, and rpax ~ N(4,0.3%) Nm. The uBot-5 is an 11-DoF mobile manipulator that has two
With these physical parameters, the pendulum must (widhDoF arms, a rotating trunk, and two wheels in a differdntia
probability~ 1.0) perform at least two swings to reach verticatirive configuration. The robot has a massl6fkg and stands
in less thanl’ seconds. 60 cm from the ground with a torso that is roughly similar to

The cost function[[20) suggests that policies that reaehsmall adult human in scale and geometry (Figdre 5). The
vertical as quickly as possible (i.e., using the fewest gajin robot balances using a linear-quadratic regulator (LQRh wi
are preferred. However, the success of an aggressive pofiegdback from an onboard inertial measurement unit (IMU).
depends on the torque generating capability of the pendulumin our previous experiments [13], the energetic and stabi-
With a noisy actuator, we expect aggressive policies to halgng effects of rapid arm motions on the LQR stabilized
higher variance. An approximation of the cost distributiosystem were evaluated in the context of recovery from impact
obtained via discretizationy{ = 40000) is shown in Figur€l2. perturbations. One observation we made was that high energy
Here we indeed see that regions around policies that atterimpacts caused a subset of possible recovery policies te hav
two-swing solutions § = [0.0,1.0], @ = [1.0,1.5]) have low high cost variance: successfully stabilizing in some dial
expected cost, but high cost variance. while failing to stabilize in others. We extend these experi

Figure[3 shows the results 8§ iterations of VBO using EI ments by considering larger impact perturbations, inéngas
selection (Vo = 15,¢ = 1.0,e = 0.2) in the noisy pendulum the set of arm initial conditions, defining a policy spacet tha




0 < 7;(t) < 1 is the commanded DC motor power for joint

at time¢. The A parameters are paired for the shoulder/elbow

pitch and the shoulder roll/lyaw joints. This pairing allows

the magnitude of dorsal and lateral arm motions to be in-

dependently specified. We model the pitch (dorsal) motions
separately for each arm and mirror the lateral motions, whic

(@) Tmax = 3.4 Nm (b) Tmax = 4.0 Nm (C) Tmax = 4.6 Nm .

J(6) = 18.2 J(6) = 17.0 J(6) = 15.9 reduces the number of policy parameters to 3. The range of

each); was constrainedt < X; < 15. WhenV,; 7(i) < 0.25,

the arms were retracted to a nominal configuration (the mean

of the initial configurations) using a fixed, low-gain linear

position controller.

The cost function was designed to encourage energy effi-
cient solutions that successfully stabilized the system:

(d) Tmax = 3.4 Nm () Tmax = 4.0 Nm (f) Tmax = 4.6 Nm T 1

J(8) =19.9 J(6) =17.7 J(8) =13.0 J(0) = h(x(T)) +/ ﬁl(t)v(t)dt’ (21)

t=0
g'sg'thi' m;)xeirr:]%rnr? %Z%%JL;Slfofgﬁg%lf:éand fisk-seek T policies \ ore 1 (t) and V' (t) are the total absolute motor current and
voltage at timef, respectively,l’ = 3.5 sec, andh(x(T)) =5
if x(T') € FailureStates, otherwiseh(x(T")) = 0.

After 15 random initial trials, we applied VBO with El
selection £ = 1.0,e = 0.2) for 15 episodes and randomized
CB selection £ ~ A(0,1)) for 15 episodes resulting in a total
of N = 45 policy evaluations. Since the left and right pitch
parameters are symmetric with respect to cost, we imposed
an arbitrary ordering constrainkjess > Ayighs, during policy
selection.

After training, we evaluated four policies with differemsk
sensitivity selected by maximizing the CB criteridnl(19)wi
k=2,k=0,x=—15, andx = —2. Each selected policy
was evaluated 10 times and the results are shown in Higure 6.
The sample statistics confirm the algorithmic predictidnsua
the relative riskiness of each policy. In this case, the-aigérse
and risk-neutral policies were very similar (no statidtica
significant difference between the mean or variance), vihide
two risk-seeking policies had higher variance (for= —2,
permits more flexible, asymmetric arm motions. the differences in both the sample mean and variance were

The robot was placed in a balancing configuration with itsatistically significant).
upper torso aligned with 8.3 kg mass suspended from the For x = —2, the selected policy produced an upward
ceiling (Figure[5). The mass was pulled away from the robgiterally-directed arm motion that failed approximatelyo6
to a fixed angle and released, producing a controlled impagtthe time. In this case, the standard deviation of cost was
between the swinging mass and the robot. The penduly® large that the second term in equatién] (19) dominated,
momentum prior to impact was9 +0.8 Ns and the resulting producing a policy with high variance and poor average
impact force was approximately equal to the robot's totassnaperformance. A slightly less risk-seeking selectien< —1.5)
in earth gravity. The robot was consistently unable to recowyielded a policy with conservative low-energy arm moversent
from this perturbation using only the wheel LQR (see thgat was more sensitive to initial conditions than the lower
rightmost column of Figurgl6). risk policies. One could view this exertion of minimal effor

This problem is well suited for model-free policy opti-as a kind of gamble on initial conditions. Figuré 7 shows
mization since there are several physical properties, sischtwo successful trials executing risk-averse and riskisgek
joint friction, wheel backlash, and tire slippage, that makpolicies.
the system difficult to model accurately. In addition, aitbb
the underlying state and action spaces are high dimensional V. DISCUSSION ANDFUTURE WORK
(22 and 8, respectively), low-dimensional policy spacest th In many problems it can be advantageous to vary risk
contain high-quality solutions are relatively straightfard to sensitivity based on runtime context. For example, systems
identify. whose environments change in ways that make failures more

The parameterized policy controlled each arm joint aor less costly (such as operating around catastrophic adbsta
cording to an exponential trajectory;(t) = e~ i, where or in a safety harness) or when the context demands that

Fig. 5. The uBot-5 situated in the impact pendulum apparatus.



Fig. 7. Time series (duration: 1 second) showing two sucaes$dls executing low-risk (topx = 2) and high-risk (bottomsx = —2) policies selected using
confidence bound criteria on the learned cost distributidre low-risk policy produced an asymmetric dorsally-dirdcéem motion with reliable recovery
performance. The high-risk policy produced an upward |#iedirected arm motion that failed approximately 50% of tired.

dient descent|[25], are sensitive to the number of policy
parameters—high-dimensional policies can require maaistri

25 I ] to optimize. Thus, these algorithms are most effective in
problems where low-dimensional policy spaces are avaiabl

20 1 but accurate system models are not. However, there is esgéden
Sl Failure | that larger policy spaces can be efficiently explored with BO

if estimates of the model hyperparameters can be obtaned

19 priori [17].
{ In contrast to local methods, such as policy gradient, BO and
— VBO can produce large changes in policy parameters between
. episodes, which could be undesirable in some situations. On
Lowerisk  Riskeneutral High-risk 1 High-risk 2 Arms Fixed approach to alleviating this potential problem (other than
simply limiting the parameter ranges) is to combine VBO
Fig. 6. Data collected over 10 trials using policies ideetlfias risk- with local gradient methods. For example, one could imagine

averse, risk-neutral, and risk-seeking after performing>vVBhe policies were coIIecting data by performing gradient descent. rathen tha
selected using confidence bound criteria with= 2, kK = 0, K = —1.5, and ’

x = —2, from left to right. The sample means and two times sample standdi@ndomly SEIG_Cting policies in_itiaHY- In this case, bothet
deviations are shown. The shaded region on the top part giltecontains  samples obtaineénd the gradient estimates could be used

all trials that resulted in failure to stabilize. Ter_] trialith a fixed-arm polic_y to constrain the posterior cost distribution. In turn, tearhed
are plotted on the far right to serve as a baseline level dbpaance for this TR "
impact magnitude. local cost distribution could act as a critic structure tduee
the variance of the policy update. Offline optimization cbul
be interweaved with the local policy updates to select greed
the system seek out a low-probability high-performancenevepolicies or change risk sensitivity using CB criteria. Wevdna
Perhaps not surprisingly, this variable risk property hasrb explored some of these ideas in recent work [14].
observed in a variety of animal species, from simple motor Another important consideration is the choice of kernel
tasks in humans to foraging birds and bees [2, 1]. functions in the GP priors. In this work, we used the
However, most methods for learning policies by interag@nisotropic squared exponential kernel to encode our prior
tion focus on the risk-neutral minimization of expectedtcosassumptions regarding the smoothness and regularity of the
Extending Bayesian optimization methods to capture pelicyinderlying cost function. However, for many problems the
dependent cost variance creates the opportunity to selegglerlying cost function is not smooth or regular; it congai
policies with different risk sensitivity. Furthermore etiability ~ flat regions and sharp discontinuities that can be difficoilt t
to change risk sensitivity at runtime offers an advantagepresent. Future work will attempt address these cases by
over existing risk-sensitive control techniques, elgl, [20], employing kernel functions wittocal supporti.e. kernels that
that require separate optimizations to produce policieth wiare not invariant to shifts in policy space [24].
different risk.

There are several properties of VBO that should be consid-
ered when determining its suitability for a particular gesh. The ability to vary risk sensitivity based on runtime comtex
First, the greater flexibility of the VHGP model means thas a potentially powerful way to generate flexible control in
VBO tends to require more policy evaluations than standardbot systems. We considered this problem in the context of
Bayesian optimization. In addition, many model-free pplicmodel-free policy search, where risk-sensitive policias be
search algorithms, such as BO, VBO, and stochastic gselected based on an efficiently learned cost distributtanm.

VI. CONCLUSION



experimental results suggest that variational Bayesiait 0§16] H. Levy and H. M. Markowitz. Approximating expected utility
mization is an efficient and plausible method for generating
risk-sensitive control.
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