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Abstract— We study three-finger caging grasps of convex
polygons. A part is caged with a number of fingers when it
is impossible to rigidly move the part to an arbitrary placement
far from its initial placement without penetrating any finger. A
convex polygon with n vertices and a placement of two fingers
—referred to as the base fingers— are given. The caging region
is the set of all placements of the third finger that together with
the base fingers cage the polygon. We derive a novel formulation
of caging in terms of visibility in three-dimensional space. We
use this formulation to prove that the worst-case combinatorial
complexity of the caging region is close to O(n3), which is a
significant improvement of the previously known upper bound
of O(n6). Moreover we provide an algorithm with a running
time close to O(n3 logn) that considerably improves the current
best known algorithm, which runs in O(n6) time.

I. INTRODUCTION

The caging problem (or: capturing problem) was posed by
Kuperberg [7] as a problem of finding placements for a set of
fingers that prevent a polygon from moving arbitrarily far from
its given position. In other words, a polygon is caged with a
number of fingers when it is impossible to continuously and
rigidly move it to infinity without intersecting any finger. A
set of placements of fingers is called a grasp.

Caging grasps are related to the notions of form (and force)
closure grasps (see e.g. Mason’s text book [8]), and immobi-
lizing and equilibrium grasps [13]. A part is immobilized by a
number of fixed fingers (forming an immobilizing grasp) when
any motion of the part violates the rigidity of the part or the
fingers. An equilibrium grasp is a grasp whose grasping fingers
can exert wrenches (not all of them zero) through grasping
points to balance the object.

Rimon and Blake [12] introduced the notion of the caging
set (also known as inescapable configuration space [16, 20],
and recently regularly referred to as the capture region [4, 10,
11]) of a hand as all hand configurations which maintain the
object caged between the fingers. They proved that in a multi-
finger one-parameter gripping system, the hand’s configuration
at which the cage is broken corresponds to a frictionless
equilibrium grasp.

Caging has been applied to a number of problems in manip-
ulation such as grasping and in-hand manipulation [16, 20],
mobile robot motion planning [5, 6, 9, 18, 19], and error-
tolerant grasps of planar objects [1, 2, 12]. Caging grasps

are particularly useful in scenarios where objects just need
to be transported (and not subjected to e.g. high-precision
machining operations). The fact that the object cannot escape
the fingers guarantees that —despite some freedom to move—
the object travels along with the fingers as these travel to
their destination. The set of caging grasps is significantly
larger than the set of immobilizing grasps (as the latter forms
a lower-dimensional subset of the former). The additional
options for finger placements can be of great value when
maneuvering the object amidst obstacles. Moreover, caging
grasps are considerably less sensitive to finger misplacements.

In this paper we consider algorithms for caging grasps by
robotic systems with two degrees of freedom. The first two
papers by Rimon and Blake [12] and Davidson and Blake [1]
consider systems with a single degree of freedom. Several
other papers [11, 12, 14, 17, 23] study two-finger caging
grasps as a special case of robotic systems with one degree of
freedom. There are also papers [3, 16, 19, 21] that consider
robotic systems with more degrees of freedom. All these
papers present approximate algorithms for computing caging
grasps. As such they differ from our work, as these algorithms
compute a subset of the set of caging grasps. We consider the
computation of all caging grasps for a given placement of the
base fingers.

There are two papers [4, 23] on three-finger caging grasps
of polygons that propose algorithms for robotic systems with
two degrees of freedom that report the entire solution set.
In these papers, a polygon with n edges and a placement
of two fingers—referred to as the base fingers—are given. It
is required to compute the caging region for the third finger,
which is the two-dimensional set of all placements of the third
finger that together with the base fingers cage the polygon.
(Consider Figure 1.) Erickson et al. [4] provided the first
algorithm for the exact computation of the caging region of
convex polygons, running in O(n6) time. In their paper the
base fingers were assumed to be placed along the boundary
of the polygon. They also established an upper bound of
O(n6) on the worst-case complexity of the caging region of
convex polygons, where the caging region was shown to be
the visible scene of O(n3) constant-complexity surfaces in
a three-dimensional space. Vahedi and van der Stappen [23]
proposed another algorithm generalizing the previous results



to compute the caging region of arbitrary polygons for any
given placement of the base fingers, that runs in O(n6 log2 n)
time. They established the same O(n6) upper bound on the
worst-case complexity of the caging region of non-convex
polygons, where the caging region was shown to be a subset of
the arrangement of O(n3) constant-complexity curves defined
by equilibrium grasps. (The arrangement of a set X of two-
dimensional curves is the set of maximally-connected zero-,
one-, and two-dimensional subsets induced by the curves of
X not intersecting any of the subsets.) However, in both cases
the mentioned upper bound on the worst-case complexity of
the caging region was due to the proposed algorithms, and it
remained an open problem to establish a better upper bound
for convex or non-convex polygons. In this paper, we tackle
the problem for convex polygons. We prove that the worst-
case complexity of the caging region of convex polygons is
O(�10(n

3)), which significantly improves the already known
upper bound of O(n6), as �10(n

3) is known [15] to be
O(n3 log∗ n)1 and thus very close to O(n3). To establish the
upper bound, firstly we have narrowed down the types of
surfaces introduced by Erickson et al. [4] that play a role in
the caging region complexity. Secondly, we have formulated
a new way to compute the caging region using those surfaces.
In addition, we develop an efficient algorithm to compute the
caging region in O(�s(n

3) log n) time using a divide-and-
conquer technique.

In Section II we introduce some definitions and assumptions
used in the paper, define a three-dimensional space called
canonical grasp space, and explain a formulation to compute
the caging region in canonical grasp space. In Section III, we
use this formulation to prove an upper bound on the complex-
ity of the caging region and present an efficient algorithm to
compute it. We conclude the paper with a discussion of future
work.

II. DEFINITIONS AND ASSUMPTIONS

A convex polygon is an intersection of a number of half
planes; Throughout the paper P is a bounded convex polygon
without parallel edges that has a fixed reference frame and n
edges.

We assume that the fingers are points. The distance between
the base fingers is d. We assume that vertices and edges of
P are in general position, i.e. no two vertices are at distance
exactly d from each other, no vertex has (shortest) distance
exactly d to an edge, and the angle between the altitude lines
drawn from any vertex to any pair of edges is not equal to
the supplement of the angle between the corresponding pair
of edges (i.e. they do not add up to �).

Instead of considering rigid placements of the base fingers
around the fixed polygon P , we can equivalently fix the base
fingers at b1 = (0, 0) and b2 = (d, 0) and consider possible
placements q ∈ ℝ2 × [0, 2�) of P (with respect to these
fingers). Let P [q] denote the set of points covered by P when

1log∗ n = min{i ≥ 0 : log(i) n ≤ 1}, where i is a nonnegative integer,
and log(i) n is the logarithm function applied i times in succession, starting
with argument n.
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Fig. 1. P [q] and P [�] are rigid translates. Caging region of P [�] is a
superset of the caging region of P [q].

placed at q. Let P [�] be the polygon P rotated by the angle �
around its reference point for which both base fingers are in
contact with it and the extensions of the edges touched by the
base fingers intersect each other below the x-axis. We refer to
P [�] as the canonical placement of any other placement q of
P with orientation �. A canonical placement can be specified
by a single parameter, which is orientation. In Figure 1, P [�]
is the canonical placement of P [q]. The polygon P [�] may
not be defined for all orientations �, which we explain about
when we define the base-diameter. In this paper, we consider
canonical placements of P because the caging region of any
other placement q = (x, y, �) of P is a subset of the caging
region of its canonical placement P [�] [22]. Figure 1 shows
one example, in which the caging region of P [q] is the area
surrounded by bold solid curves and the caging region of P [�]
is the union of both the area surrounded by bold solid curves
and the area surrounded by bold dashed curves. Moreover,
given the caging region of P [�], the caging region of P [q]
can be computed easily [22].

Consider P at a placement q = (x, y, �). Every horizontal
line intersects the polygon in at most two points. The base-
diameter of the polygon is the maximum length intersection
among all horizontal lines. The base-diameter of any P [q′]
with q′ = (x′, y′, �) equals that of P [q]. When the base-
diameter of P [q] with q = (x, y, �) is less than d, P [�] is
not defined, as it is not possible to place a translated copy
of P with orientation � such that it touches both b1 and b2.
A critical angle is an angle � for which d is equal to the
base-diameter of P [�].

Every three-finger grasp in which the polygon is at P [�]
can be specified by (p, �) ∈ ℝ2 × [0, 2�), to which we
refer as a canonical grasp. (The canonical grasp of a grasp
is uniquely defined by the definition of canonical placement.)
The parameter � specifies the orientation of the polygon and
p = (x, y) specifies the location of the third finger. We refer
to the space ℝ2 × [0, 2�) of all such three-finger grasps as
the canonical grasp space. Throughout the paper the y-axis
is the vertical axis both in object plane and also in canonical
grasp space. The canonical grasp (p, �) is the canonical grasp
of every other grasp of P at a placement q with orientation �.
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Fig. 2. The triple of edges (e1, e2, e3) is non-triangular, while the triple of
edges (e3, e4, e1) is triangular.
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Fig. 3. (p2, �) is an enclosing grasp while both (p1, �) and (p3, �) are
non-enclosing grasps.

A triple of edges of P is called triangular if the supporting
lines of the edges form a triangle that encloses P , and is called
non-triangular otherwise. Consider Figure 2 to see examples
of triangular and non-triangular triples of edges.

Consider a canonical grasp (p, �). The downward vertical
ray emanating from the point p = (x, y) in the plane � = �
may intersect P [�] at an edge. This edge together with the
edges of P [�] touched by the base fingers forms a triple of
edges. The canonical grasp (p, �) is an enclosing grasp if
the vertical ray intersects P [�] and if the triple of edges is
triangular. Otherwise if the vertical ray does not intersect P [�],
or if the triple of edges is non-triangular, then the canonical
grasp is a non-enclosing grasp. See Figure 3 for examples of
enclosing and non-enclosing grasps.

The following two lemmas explain two important facts
about the canonical grasps of caging grasps.

Lemma 2.1: [22] The canonical grasp of every caging grasp
exists and it is an enclosing grasp.

Lemma 2.2: [22] A caging grasp and its canonical grasp
are reachable from each other by a sequence of translations.

If a canonical grasp is a non-enclosing grasp then it is a
non-caging grasp by Lemma 2.1. The caging region of any
placement q of P is a subset of the caging region of its
canonical placement by Lemma 2.2. Moreover, if the canonical
grasp of a three-finger grasp is non-caging then the grasp itself
is non-caging too.

Let C(�) be the set of all placements of the third finger that
together with the base fingers form a caging grasp of P [�]. In
this paper we are interested in the combinatorial complexity
of C(�) and its computation in the worst case.

The boundary of C(�) consists of two x-monotone chain

of curves of which the lower one is a subset of the boundary
of P [�] [22]. Let K(�) be the upper part of the curves on
the boundary of C(�). Clearly the complexity of C(�) is
proportional to the complexity of K(�) plus O(n) in the worst
case.

Vahedi and van der Stappen [23] have proven that the place-
ment of the third finger on K(�) corresponds to equilibrium
grasps, which we mention here in form of a lemma.

Lemma 2.3: [23] Every placement of the third finger on
K(�) corresponds to a two-finger equilibrium grasp or a three-
finger equilibrium grasp.

Every three-finger equilibrium grasp is a canonical grasp
and, thus, corresponds to a point in canonical grasp space.
Two-finger equilibrium grasps, however, are not defined inside
canonical grasp space because only one of the base fingers
contacts the polygon. Instead, as we explain in Subsection II-
C, we can represent them with their canonical grasp.

A. Visibility in Canonical Grasp Space

In this subsection we define P in canonical grasp space as
a 3D object defined by sliding the polygon P on both base
fingers (i.e. keeping the contact with both base fingers). The
surface patches of P play an important role in the next sections
in establishing a bound on the complexity of the caging region.
Recall that every canonical grasp corresponds to a point in
canonical grasp space. As we consider the surface patches of
P as obstacles, we define visibility between two points in
canonical grasp space (with the same x and y coordinates) as
a sufficient condition that the corresponding canonical grasps
have similar caging properties. Then we explain a number of
properties of the surface patches of P .

Consider an edge e of P [�]. The edge e together with the
edges e1 and e2 touched by the base fingers forms a triple of
edges. Consider a motion of P at orientation � in which P
is rotated and translated while keeping the contact with the
base fingers. We refer to this motion as the sliding of P at
orientation �. Clearly it is possible to slide P at orientation �
in either clockwise or counterclockwise directions. As we slide
P at orientation � in each direction one of the base fingers will
eventually reach a vertex of the polygon, and the pair of edges
touched by the base fingers change. Meanwhile, the trace of
the edge e forms a surface patch, s(e1, e2, e) ⊂ ℝ2×[0, 2�), in
canonical grasp space, that corresponds to the triple of edges.
Clearly, s(e1, e2, e) has a constant complexity. Let s(e1, e2, e)
be part of s(e1, e2, e) that are induced by all angles � for
which the polygon P [�] is below the edge e along the y-axis.
The surface patch s(e1, e2, e) has a constant complexity as
well. If the triple (e1, e2, e) of edges is triangular then we call
s(e1, e2, e) a triangular surface patch.

We define P in canonical grasp space as the set of patches
s(e1, e2, e) for all edges e of the polygon P and all pairs e1
and e2 of edges touched by the base fingers. In other words, P
is the set of all surface patches that are formed by considering
the upper part of P [�] for all angles � for which d is less
than the base diameter of P [�]. The intersection of the plane
� = � with P is the upper part of P [�] where � is an angle
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Fig. 4. The surface patches of P .

for which d is less than the base diameter of P [�]. Every
surface patch in P corresponds to a set of three-finger grasps
whose finger placements are on a unique triple of edges of P
two of which are touched by the base fingers and the other
one is touched by the third finger. Figure 4 displays P for the
convex polygon shown in Figure 5. In Figure 5 the surface
patches of P are projected to the space (x, �). The horizontal
gray lines display the orientations in which the pair of edges
touched by the base fingers change. The surface patches of
P form a number of connected terrains that are bounded by
critical angles along the �-axis. Since there are O(n3) triples
of edges, there are O(n3) surface patches in P .

Consider an angle � for which P [�] is defined. The point
(p, �) in canonical grasp space corresponds to a valid canon-
ical grasp provided that p is not inside P [�].

Consider two points (p, �) and (p, �) in canonical grasp
space that correspond to valid canonical grasps. Here we define
visibility between two such grasps. In this paper, the visibility
is defined only along the �-axis. In other words, we define
visibility between two points in the canonical grasp space
only when the line connecting the two points is parallel to
the �-axis. There are two different line segments that connect
(p, �) and (p, �), which correspond to positive and negative
directions along the �-axis. We define (p, �) to be visible from
(p, �) if and only if at least one of the two line segments
that connect the two points intersect no surface patches of P .
According to the definition, when (p, �) and (p, �) are visible
from each other, they are reachable from each other by rotation
and translation; thus, they are either both caging or both non-
caging. In fact, the visibility condition is a sufficient condition
for the two grasps to be both caging or both non-caging but
it is not a necessary condition.

B. Triangular Borders

The set P of surface patches consists of a number of trian-
gular and non-triangular surface patches. The set of triangular
surface patches forms a number of connected components.
Triangular borders are the outer boundary of these connected
components. In other words, triangular borders are the com-
mon boundary between the triangular surface patches and non-
triangular surface patches, and also the boundary between
triangular surface patches and critical angles. Every canonical

P

Fig. 5. Triangular borders of P projected to the space (x, �).

grasp that corresponds to a point on the triangular borders is
a non-caging grasp.

In Figure 5 the surface patches of P are projected to the
space (x, �), in which the �-axis is the vertical axis and
the x-axis is the horizontal axis. The triangular borders are
displayed in bold and the loci of vertices are displayed in
gray; the distance between the two dotted vertical lines equals
the distance between the base fingers. As it is displayed there
are two connected components enclosed by triangular borders.
(Recall that the �-axis is circular.)

C. Two-Finger Equilibrium Grasps

In this subsection we explain about two-finger equilibrium
grasps of convex polygons. Due to a general position assump-
tion, two-finger equilibrium grasps involve the third finger and
one of the base fingers.

Consider a two-finger equilibrium grasp of P at placement
q with orientation �. We can show that if P [�] is defined,
the equilibrium grasp and its canonical grasp are reachable
from each other by translation, and thus they are non-caging
because two-finger equilibrium grasp is non-caging. We state
this fact in form of a lemma.

Lemma 2.4: Every two-finger equilibrium grasp and its
canonical grasp are reachable from each other, and thus they
are non-caging.

According to Lemma 2.4, since every two-finger equilib-
rium grasp is reachable from its canonical grasp, we can
represent the two-finger equilibrium grasps in canonical grasp
space by their canonical grasps.

Since for every edge there is at most one vertex with which
it can form a two-finger equilibrium grasp, there are at most
n pairs consisting of a vertex and an edge that induce a two-
finger equilibrium grasp. Each pair of an edge and a vertex
that forms a two-finger equilibrium grasp induces four curves
in canonical grasp space based on the finger that is at the



vertex and the base finger that is involved. We refer to these
curves as the two-finger equilibrium curves each of which
has a constant complexity. Similarly there are O(n) pairs
consisting of two vertices that define a two-finger equilibrium
grasp. Two vertices that define a two-finger equilibrium grasp
are necessarily antipodal.

The two-finger equilibrium curves in canonical grasp space
can be classified into two groups, such that in each group the
curves are circular centered around one of the base fingers
in the projection to the space (x, y) [23]. The two-finger
equilibrium curves of each group involve the same base finger
either b1 or b2.

D. Escaping by Translation
In this subsection we first present some definitions and a

result by Erickson et al. [4] to identify all placements of
the third finger that prevent P [�] from escaping by pure
translation; these placements form a two-dimensional region.
Then we investigate the relationship between this region and
the caging region.

Let the convex polygon Q[�, b1] be the union of the set
of all translated copies of P [�] touching the base finger b1.
The polygon Q[�, b1] has twice number of edges of P [�].
Every edge of P [�] is parallel to exactly two edges of Q[�, b1].
Similarly let Q[�, b2] be the union of the set of all translated
copies of P [�] touching b2.

Let X[�] be the points inside the intersection of Q[�, b1]
and Q[�, b2] that are above P [�]. Figure 6 shows Q[�, b1] and
Q[�, b2]; the polygon is displayed in dark-gray and X[�] is
displayed in light-gray.

Erickson et al. [4] have proven that the set X[�] is the set
of all placements of the third finger that prevents P [�] from
escaping by pure translation.

Lemma 2.5: [4] The polygon P [�] can escape by pure
translation if and only if the third finger placement is out-
side X[�].

By Lemma 2.5, each edge of P [�] on the boundary of
X[�] forms an enclosing triple of edges together with the
edges touched by the base fingers. Let ∂Xu[�] be the upper-
boundary of X[�]. The set of edges of ∂Xu[�] consists of
two continuous sets of edges: one set of edges belonging to
the boundary of Q[�, b1] and one set of edges belonging to
the boundary of Q[�, b2].

Clearly, X[�] is a superset of C(�). The following lemma
proves that if a point on ∂Xu[�] is on the caging boundary
then either the corresponding grasp corresponds to a two-finger
equilibrium grasp or the corresponding grasp is on triangular
borders, from which we omit the proof.

Lemma 2.6: A point on ∂Xu[�] that belongs to K(�)
either corresponds to a two-finger equilibrium grasp or it is
on a triangular borders.

In Figure 6, the points on ∂Xu[�] that can possibly be on
K(�) are marked with small gray circles.

E. Caging and Non-caging in Canonical Grasp Space
In this subsection we prove that it is possible to compute

C(�) for a given orientation � by using the surface patches of

b1 b2

Q[�, b1] Q[�, b2]

Fig. 6. Illustration of Lemma 2.6.

P , and two types of non-caging grasps: grasps on triangular
borders and canonical grasps of two-finger equilibrium grasps.

If p ∈ C(�), then the grasp (p, �) in canonical grasp space
is only visible from other caging grasps. In other words, if
(p, �) is a non-caging grasp and it is visible from (p, �) then
p /∈ C(�). In this subsection, we formulate a way to identify
all points in the plane � = � that are visible from non-caging
grasps. In previous sections, we have introduced two groups
of non-caging grasps: grasps on triangular-borders and two-
finger equilibrium grasps. In this subsection, we define vertical
walls on grasps that are on triangular borders, and also on
canonical grasps of two-finger equilibrium grasps (which we
explain more in the next paragraphs). These walls represent a
set of non-caging grasps, such that if a point on the plane � =
� is visible from a point on one of these walls then that point
represents a non-caging grasp. We prove the important fact that
if an enclosing grasp is not visible from any of the mentioned
vertical walls, then it is a caging grasp. Therefore, these walls
and the surface patches of P provide enough information to
compute C(�).

Consider a non-caging grasp ((x, y′), �) in canonical grasp
space. Consider another grasp ((x, y), �) where y > y′; thus
the point ((x, y), �) is vertically above ((x, y′), �) in canonical
grasp space, and ((x, y), �) is a non-caging grasp as well.
Consider another enclosing grasp ((x, y), �) in canonical grasp
space. If ((x, y), �) is visible from ((x, y), �), then since
((x, y), �) is non-caging, ((x, y), �) is non-caging as well.

The set of all grasps ((x, y), �) in canonical grasp space in
which y > y′ and ((x, y′), �) is on triangular borders, defines
a number of vertical walls, to which we refer as the triangular-
border walls. No point in C(�) in the plane � = � can be
visible from a point on a triangular-border wall. Therefore, the
set of points in the plane � = � that are visible from no point
on the triangular-border walls is a superset of C(�).

Recall that the canonical grasps of the two-finger equilib-
rium grasps form a number of curves in canonical grasp space.
We define the upward vertical walls on all points on these
curves, to which we refer as the two-finger equilibrium walls.
Similar to the triangular-border walls, if (p, �) is visible from
a point on a two-finger equilibrium wall then (p, �) is non-
caging. The two-finger equilibrium walls intersect no surface
patches of P by Lemma 2.4.

We define the non-caging walls as the union of the set of
triangular-border walls and two-finger equilibrium walls. Let



V (�) be the set of points in the plane � = � that are visible
from no point on the non-caging walls. We already know that
C(�) is a subset of V (�). We prove that C(�) is equal to
V (�).

First we provide a lemma which we use to prove the main
result of this subsection. The following lemma states that the
local minima of y-coordinates in the interior of the intersection
of a triangular surface patch of P with a plane x = x are
immobilizing grasps, from which we omit the proof. In its
proof we have used a number of results proven by Vahedi and
van der Stappen [22]. (Every immobilizing grasp is a caging
grasp.)

Lemma 2.7: The local minima of y-coordinates in the inte-
rior of the intersection of a triangular surface patch of P with
a plane x = x are immobilizing grasps.

The following lemma states that C(�) is equal to V (�).
This result will be the foundation of our approach to establish
the complexity bound. To prove the claim, we prove the equiv-
alent lemma that every non-caging enclosing grasp ((x, y), �)
is visible from a non-caging wall. Note that if ((x, y), �) is
visible from a non-caging wall then ((x, y′), �) with y′ > y
is also visible from that wall. Therefore, it suffices to prove
the claim for the points on K(�).

Lemma 2.8: For every point (x, y) on K(�), the point
((x, y), �) is visible from a point on a non-caging wall.

Proof: If the point ((x, y), �) corresponds to a two-
finger equilibrium grasp then ((x, y), �) is visible from a
two-finger equilibrium wall by Lemma 2.4, and the claim
follows. Assume that ((x, y), �) does not correspond to a two-
finger equilibrium grasp. As a result, the point ((x, y), �) must
correspond to a three-finger equilibrium grasp by Lemma 2.3.
The number of three-finger equilibrium grasps in which the
x-coordinate of the third finger is fixed and also the distance
between the base fingers is d, is limited. Therefore, assume that
((x, y), �) is a point in canonical grasp space that corresponds
to a three-finger equilibrium grasp, (x, y) ∈ K(�), it is not
visible from a two-finger equilibrium wall or a triangular-
border wall, and has a y-coordinate that is minimal among
all such three-finger equilibrium grasps.

Since ((x, y), �) is non-caging, the canonical placement of
P at orientation � can escape by first sliding along the base
fingers and then by translating, according to Erickson et al. [4].
Let ((x, y), �) be the closest reachable canonical grasp at
which it is possible for the canonical placement of P at orien-
tation � to escape by translation. The set of walls visible from
((x, y), �) is the same as the walls visible from ((x, y), �).
Since the polygon can escape by translation through the grasp
((x, y), �), (x, y) is neither a point inside C(�) nor a point
inside X[�]. If (x, y) is on K(�), then it corresponds to a
two-finger equilibrium grasp or it is on a triangular border by
Lemma 2.6. Therefore, assume that (x, y) is outside C(�).
Let Q be the set of all points in canonical grasp space whose
corresponding canonical grasps are reachable from ((x, y), �)
by sliding the polygon on the base fingers while allowing the
third finger to monotonically be squeezed. Every non-caging
wall visible from a point in Q is also visible from the points

((x, y), �) and ((x, y), �). The set Q contains a number of
local minima along the �-axis with respect to the y-coordinate.
Since ((x, y), �) is not visible from a triangular-border wall
the local minima of Q are immobilizing grasps by Lemma 2.7.
Let ((x, ym), �m) be one of those immobilizing grasps and
consider (x, y′) ∈ K(�m). We have ((x, y′), �m) ∈ Q and
thus all non-caging walls that are visible from ((x, y′), �m) are
also visible from ((x, y), �). If ((x, y′), �m) corresponds to a
two-finger equilibrium grasp the claim follows. Otherwise, the
grasp ((x, y′), �m) corresponds to a three-finger equilibrium
grasp by Lemma 2.3 for which y′ < y. The existence of the
grasp ((x, y′), �m) contradicts the assumption.

Corollary 2.9: K(�) is the lower boundary of the non-
caging walls projected to the plane � = � not obstructed by
the surface patches of P .

III. COMPLEXITY AND COMPUTATION OF THE CAGING
REGION

In this section we prove that the complexity of the caging
region is close to O(n3) in the worst case. We also propose an
algorithm that efficiently computes the boundary of the caging
region in a time that is close to O(n3 log(n)) in the worst case.
The main fact we prove is that the complexity of the visible
part of a surface patch of P not hindered by the non-caging
walls is constant. This fact gives us both a way to establish
an upper bound on the complexity of the caging region and
obtain a solution to compute the caging region efficiently.

According to Corollary 2.9, K(�) is the lower boundary
of the non-caging walls not obstructed by the patches of P
projected onto the plane � = �. Here, however, we formulate
a slightly different way to compute K(�). We consider the
clockwise and counterclockwise viewing direction separately.
We consider only the surface patches and non-caging walls
within the same connected component of triangular surface
patches of P intersected by the plane � = �. For each
direction, we project the visible part of each surface patch
to the plane � = � by considering only the non-caging
walls as obstacles, and compute the upper boundary of the
projections. Without considering the surface patches of P ,
we separately project the non-caging walls to the plane � =
� and compute the lower boundary of the projections. Let
V +(�) be the maximum of the two resulting boundaries in
the clockwise viewing direction. Define V −(�) similarly for
the counterclockwise direction. We have the following lemma,
from which we omit the proof.

Lemma 3.1: K(�) is the minimum of V +(�) and V −(�).
As we consider the non-caging walls as obstacles, we prove

in Lemmas 3.5 and 3.6 that the complexity of the visible part
of each surface patch is constant. Before that, we mention
three results that can be easily verified.

Lemma 3.2: The two-finger equilibrium walls involving the
same base finger do not intersect each other.

Observation 3.3: The triangular-border walls do not inter-
sect each other.

Lemma 3.4: The non-caging walls do not intersect the
surface patches of P .



First we prove that the visible part of a surface patch not
obstructed by triangular-border walls has constant complexity.
In Lemma 3.6 we consider the two-finger equilibrium walls
as well.

Lemma 3.5: The visible part of a surface patch of P not
obstructed by triangular-border walls has constant complexity.

Proof: Since the triangular-border walls are built on the
surface patches of P we can regard them as unbounded in both
upward and downward directions. To see, consider a point
which is visible behind and below a triangular-border wall.
Then that point is hindered by the surface patch upon which
the triangular-border wall is built.

We divide the triangular-border walls into two groups being
on the left or on the right with respect to the x-axis. The walls
in each group have a complete order along �-axis according to
their distance from the plane � = �. Consider the left group.
(The right group can be treated similarly.) Since we cannot
see the side that does not face the plane � = � we consider
each local maximum with respect to the x-coordinate as a wall
perpendicular to the �-axis and ignore the walls in between two
consecutive local maxima. We consider the set of local maxima
of the triangular borders along x-axis and then we consider the
sub-sequence of local maxima in increasing order. The reason
is that a local maximum is completely invisible behind another
local maximum with a larger x-coordinate.

Since the complexity of a surface patch is constant it has a
constant number of local minima with respect to the x-axis.
Consider a local minimum that is hindered by a triangular-
border wall (from the increasing sub-list). The hindering wall
is the wall that is the closest to the local minimum with
respect to �-axis and is between the plane � = � and the
local minimum. Then every other point of the surface patch
that its x-coordinate is larger than the local maximum of the
triangular-border wall and it is connected by a x-monotone
curve (on the surface patch) to the hindered point (i.e. the local
minimum point), is not hindered by any other triangular-border
wall of the same group. Every other point of the surface patch
that its x-coordinate is smaller than the local maximum of the
triangular-border wall and it is connected by a x-monotone
curve to the hindered point (i.e. the local minimum point), is
hindered. Every point on the surface patch is connected to at
least one local minimum with a x-monotone curve.

The following lemma is the main lemma we use to provide
an upper bound on the complexity of caging region.

Lemma 3.6: The visible part of a surface patch of P not
obstructed by non-caging walls has constant complexity.

Proof: Consider one side of the plane � = � and an
arbitrary surface patch of P . Consider the visible part of the
surface patch not obstructed by the triangular-border walls.
By Lemma 3.5 the complexity of this visible part is constant.
Therefore, we compute the visible part of the surface patch
not obstrcuted by the triangular-border walls and then remove
(or ignore) the triangular-border walls. Consider the two-finger
equilibrium walls that involve the base finger b1. (We can show
that there is no need to consider part of the surface patch on
the right or left side of a two-finger equilibrium wall, but we

do not explain it here.)
There is a complete order between the two-finger equilib-

rium walls along �-axis according to their distance from the
plane � = �. We traverse the two-finger equilibrium walls
according to that order and we compute a sub-sequence with
decreasing radii. The reason is that, a two-finger equilibrium
wall with a larger radius is completely invisible behind a two-
finger equilibrium wall with a smaller radius by Lemma 3.2.

Consider the local maxima of the surface patch with respect
to the distance to the line (0, 0, �). Since the complexity of a
surface patch is constant the number of such local maxima is
constant. If a local maximum is visible then all points that are
monotonically connected to the local maximum and have have
less distance with respect to the local maximum are visible
too. If a local maximum is not visible, then it is hindered by a
number of two-finger equilibrium walls from which consider
the wall (from the decreasing sub-list) that is the furthest away
from the plane � = �. All points of the surface patch that are
monotonically connected to the local maximum (by a path on
the surface patch) and have distance less than the radius of
this wall are not hindered by any other two-finger equilibrium
wall of this group. All points of the surface patch that are
monotonically connected (by a path on the surface patch) to
the local maximum and have distance larger than the radius
of this wall, are hindered.

We can similarly argue about the other group of two-finger
equilibrium walls that involve the base finger b2.

In the following lemma and theorem we provide an upper
bound on the worst-case complexity of K(�).

Lemma 3.7: The complexity of K(�) is at most the sum
of complexities of V +(�) and V −(�).

Proof: The set K(�) is the minimum of V +(�) and
V −(�) by Lemma 3.1. Let the complexity of V +(�) be of
order O(f(n)). Consider the sequence of the breaking points
of both V +(�) and V −(�) in increasing order with respect to
their x-coordinates. Between every two consecutive breaking
point, exactly one sub-curve of V +(�) and exactly one sub-
curve of V −(�) lie within the interval. These two sub-curves
intersect each other a constant number of times. Since, the
total number of breaking points of both V +(�) and V −(�)
is of order O(f(n)), the total number of breaking points of
K(�) is also of order O(f(n)).

A Davenport-Schinzel sequence, DS(m, s)-sequence, is a
sequence of m symbols in which no two symbols alternate
more than s times. The lower boundary of m two-dimensional
x-monotone curve segments in which no two curve segments
intersect each other more than s − 2 times is a DS(m, s)-
sequence. The maximum length of a DS(m, s)-sequence is
�s(m) [15].

Theorem 3.8: The complexities of both V +(�) and V −(�)
are of order O(�10(n

3)).
Proof: The degree of the silhouette curves of the visible

part of each surface patch is at most four [4]. Therefore
each two curves intersect each other at most eight times. The
complexity of the upper-boundary of the visible part of each
surface patch projected to the plane � = � is O(�10(n

3)) by



Lemma 3.6. The complexity of the lower-boundary of the non-
caging walls projected to the plane � = � is O(�10(n

3)) too.
The complexity of the maximum of the two resulting chain of
arcs is O(�10(n

3)) too. The proof for the last part is the same
as the proof explained in Lemma 3.7.

We briefly explain a way to compute K(�) in
O(�10(n

3) log n) time. The visible parts of all surface patches
can be computed in O(n3 log n) time. To compute the upper-
boundary of the projected visible parts we use a divide-and-
conquer technique. We divide the projected visible parts into
two groups and compute the upper-boundary for each group
separately. Then we merge the results to compute the final
upper-boundary. We use the same technique to compute the
lower-boundary for the projected patches of non-caing walls.

Theorem 3.9: K(�) can be computed in O(�10(n
3) log n)

time.

IV. CONCLUSION

We have provided a worst-case bound of almost O(n3) on
the combinatorial complexity of the caging region of a convex
polygon with n vertices, and an algorithm with a running
time close to O(n3 log n) to compute the caging region. Both
results present a major improvement over previous results. Our
results have been obtained by exploiting a novel formulation
of caging in terms of visibility in canonical grasp space.

The first question that comes to mind is whether the bounds
reported here are tight. To gain insight into this question we
will aim to construct convex polygons that have a caging
region with a complexity that approaches the upper bound
of O(n3). Another challenge is to extend the bounds obtained
in this paper to the caging region of non-convex polygons.
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